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ABSTRACT

A novel framework for spatially estimating unknown image

data is presented. Common applications include inpainting,

concealment of transmission errors, prediction in video cod-

ing, etc. Firstly, a segmentation of the spatial neighborhood

of the area to be estimated is performed and a plausible set

of segments that cross the unknown area is identified. Then,

a reconstruction algorithm is developed by combining sparse

modeling and patch-based synthesis. The improved extrap-

olation capabilities of the presented approach is shown for

variety of image characteristics and the robustness of the al-

gorithm is illustrated for large unknown blocks, which are

becoming especially important for future video coding stan-

dards in order to efficiently code high resolution content.

Index Terms— Error concealment, Texture synthesis, Ex-

trapolation, Inpainting

1. INTRODUCTION

The process of extending a discrete signal from known areas

into unknown areas is called signal extrapolation. Transmis-

sion of images or videos in error prone environments may

lead to block losses. In order to estimate the missing image

data, spatial extrapolation can be applied in image transmis-

sion, intraframe coded video transmission, or prediction of

uncovered background, due to the lack of motion informa-

tion. Decoder side recovery techniques work on the received

data without the need for any error correction data to be trans-

mitted by the encoder. Most algorithms reported in literature

are best suited for either pure structure or pure texture areas.

Although an attempt is made in [1] to classify lost blocks as

structure or texture and use the suitable algorithm for each

case, the issue of structure within texture blocks or vice versa

is not well addressed. With the popularity of high resolution

content, block sizes larger than the traditional 16× 16 are be-

coming increasingly important for coding [2] and hence the

decoder should be able to deal with large block errors.

In [3], we proposed Structure-Aware Inpainting (SAI), an

algorithm controlled by segmentation and tensor voting [4],

for filling arbitrary shaped regions. SAI produces good re-

sults, especially for textured regions, as it replicates the avail-

able surrounding natural texture. However, it relies on the

masks generated by segmentation, which can produce visible

artifacts when patching happens from an incorrect segment.

In recent years, considerable interest has been paid to sparse

image modeling techniques [5]. These algorithms operate

on the intuition that natural images can be decomposed into

sparse combination of basic elements. Sparse modeling tech-

niques are able to successfully capture the inherent structure

in data. In this paper, we develop a novel combination of

sparse modeling and structure aware inpainting to address

the issues of structure and texture handling as well as higher

block sizes. Firstly, we perform segmentation to identify a

plausible set of segments that are related to the area to be

filled. In the case of structured regions, a mask is built to se-

lect the relevant segments for modeling. This improves the

sparsity prior because the unrelated segments in the rectan-

gular neighborhood, which would otherwise contribute to the

modeling, are eliminated. For regions surrounded by highly

textured area, we reconstruct the structure that could be present

in the missing region using tensor voting and then fill-in the

texture from appropriate segments.

2. FRAMEWORK FOR EXTRAPOLATION

Consider a region R in an image consisting of known sam-

ples in area A and unknown samples in area B. The process

of signal extrapolation is to estimate the samples in B using

the samples in A. The intensities of region R can be inter-

preted as a column vector f ∈ �N , where N denotes the

number of samples in R. The algorithm starts by segment-

ing the available neighborhood of the missing region. The

spatial segmentation algorithm used in this paper is based on

a multi-resolution histogram clustering method proposed by

Spann and Wilson [6]. It has been selected because it is a

good compromise between segmentation efficiency and com-

plexity. We extended the approach by Spann and Wilson to

account for color information [7]. For that, the components
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Fig. 1. Block diagram of extrapolation process. Structure is
reconstructed using sparse modeling and texture using Patch-
ing. Labeling produces a mask which enhances sparsity prior
in modeling. Tensor Voting reconstructs structure that could
be present within textured areas.

of the color space, the given input image is represented in, are

decorrelated using principal component analysis. Among the

resulting color components, the one with the most discrimina-

tive power is selected for histogram clustering. It is shown in

[7] that this approach significantly improves the performance

of the fundamental algorithm.

Then, we estimate the characteristics of missing area by

computing the texture level of surrounding samples accord-

ing to [8]. It involves the computation of local extrema for

each of the surrounding blocks. A local extremum is a sam-

ple which is both a local row extremum as well as a local

column extremum. When the count of local extrema falls be-

low a specified threshold, we build a sparse model of R and

use it to estimate the samples of B, as described in Sec. 2.1.

Otherwise, we consider the missing block as containing high

texture levels and determine the structure using tensor vot-

ing and perform a patch based synthesis [3], as detailed in

Sec. 2.2. The entire process in depicted in a block diagram in

Fig. 1.

2.1. Extrapolation using Sparse model

We start by building a model of the area R using only the sam-

ples of A by means of a masking vector m which is defined

to contain a value of one at the locations of the known sam-

ples and zero at missing locations. We consider a dictionary

D consisting of vectors dk. A parametric model consisting of

a linear combination of vectors dk is used for generating the

approximation vector f̂ , so that

f̂ =
∑

∀dk∈K
ck · dk, (1)

where k ∈ K consists of the vectors chosen from D used

for modeling and ck are the model parameters to be esti-

mated. The estimation is done such that the approximation

error between the samples at known locations of f and the

corresponding samples produced by the model f̂ ,

E = (f − f̂)T · m · mT · (f − f̂), (2)

is minimized. In [9], an isotropically decaying weighting

function is defined so that the known samples in the vicinity

of the unknown area get a higher importance than the samples

that are far from it.

When Eq. (2) is minimized by setting the partial deriva-

tives of E w.r.t ck to zero, it leads to an underdetermined sys-

tem of equations as the number of known samples is less than

the total number of samples in R. For solving this underde-

termined problem, a greedy approach is taken in which the

signal is approximated in terms of one additional vector from

D per iteration [10]. In each iteration, the vector is chosen

in such a way that the reduction of the weighted residual en-

ergy is maximized. After generating the parametric model f̂ ,

the area of interest is cut out and used as an estimate for the

unknown samples. In case the dictionary is composed of ba-

sis vectors of �N , Frequency Selective Extrapolation [11], a

fast and efficient algorithm that performs sparse modeling in

transform domain, can be employed.

We enhance the sparse modeling by exploiting the results

of segmentation. Generally, the entire rectangular neighbor-

hood R is used for the error minimization. When doing so,

cks’ sparsity is affected because R could be composed of

samples of multiple segments, whereas the missing area B
might be constituted by only few of those segments. This

leads to non-homogenity and may include many more vectors

from D into the model than actually needed. To improve the

sparsity prior, we identify the segments that go through the

missing area using spatial labeling of surrounding samples.

Fig. 2(a) shows three different segments S1, S2 and S3. In

this example, only the segments S2 and S3 go through the

missing area. We construct a segmentation mask b contain-

ing a value of one at relevant segments (labels S2, S3) and

zero at remaining locations (label S1). A new matrix S is

formed combining the mask containing known samples and

the selected segments,

S = (m · mT ) · (b · bT ). (3)

The cost function for the minimization now becomes,

J = (f − f̂)T · S · (f − f̂). (4)

The remaining steps of dictionary vector selection and resid-

ual updation are unaltered by the proposed modification.

2.2. Texture synthesis by Patching

When the texture in the image is not similar to the dictionary

elements, model based methods as described in Sec. 2.1 may

result in blurring. One possibility to avoid such artifacts is

to adapt the dictionary using the observed data. Patch based

texture synthesis techniques offer a simple solution by copy-

ing natural texture from surrounding area. Here, we describe

the proposed method based on [3] and discuss the cases of

multiple missing textures and structure in textured areas.

Continuing the notation from Sec. 2.1, the basic process

of texture replication from neighboring available data can be

represented as a linear operation,

f̂ = M · f , (5)
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Fig. 2. (a) Segmentation labels S1, S2 and S3 with missing
area shown in white. (b) Segmentation mask with the detected
edges (red) and the new estimated edge by using tensor voting
(green). To each resulting region in B the adjacent segmen-
tation label is assigned. (c) To reconstruct the edge within B,
patches along the detected edges are used. To find the best
patch, the similarities in texture and structure are measured
via MSE and Euclidean distance. (d) Every position in B is
referred to a segmentation label. To reconstruct the texture
within B, patches are taken from appropriate label positions.

where the matrix M is of dimension N×N . It is initialized so

that a known sample is just copied from f to f̂ . For instance,

if the element at row i in f is known, a value of one is set at

the diagonal location of M in row i and the other entries of

row i are set to zero. For the determination of elements of the

rows corresponding to unknown samples, we use a property

of texture similarity that for a generated texture to be similar

to an input texture it is sufficient that all neighborhoods in

the generated texture be similar to some neighborhood in the

input [12].

The dominant structures, such as object contours, are im-

portant for human perception. The missing block could be

composed of multiple texture patterns or a mix of structure

and texture, illustrated as different segments in Fig. 2(a). In

such cases, the edge between the different textures constitute

important structural information. Such blocks are handled

solely as structure blocks in [1]. In our proposed framework,

we detect such occurrences using dominant edges between

different textures in terms of segment boundaries (Fig. 2(b),

red lines) and reproduce the structure within texture blocks re-

sulting in better quality of extrapolation. Edges impinging on

B are referred pairwise to each other and reconstructed within

B, by using tensor voting [3, 4]. The newly calculated edge is

depicted in green in Fig. 2(b). This provides a restriction on

M by zeroing out the elements that do not belong to the same

segment as the sample to be estimated.

The filling process relies on the assumption that edge re-

construction is more important than texture reconstruction and

hence edge filling, described in Fig. 2(c), is operated before

texture filling shown in Fig. 2(d). The filling process is initial-

ized by sampling the structure equidistantly (half patch size)

to generate sample filling positions within B denoted as v.

The known adjacent edges in A are also sampled to produce

source patches u. Patches centered around the source sam-

ple positions within A are used to restore the missing edge

in B. Matching is conducted based on the known boundary

Image PSNR (dB) SSIM

CM[13] Proposal CM[13] Proposal

Lena 31.70 33.14 0.97 0.98

Peppers 30.74 30.97 0.93 0.94

Baboon 28.31 28.16 0.88 0.88

Table 1. Objective results of extrapolation

condition, i.e. from the border of B inwards. The best patch

is found by minimizing

(u − v)T · (u − v) + λ · dist(u,v), (6)

where dist(u,v) is the shortest euclidean distance between

the patches u and v and λ is the relative importance of tem-

plate matching error and the proximity of patches. Texture

filling is done in a helical manner starting from the border of

B inwards as depicted in Fig. 2(d). The search area outside B
is restricted to locations that have the same segmentation label

as the considered texture location. A post-processing method

[3] is introduced, to ensure a seamless transition between ad-

jacent patches.

3. SIMULATION SETUP AND RESULTS

For evaluating the proposed algorithm, we generate input im-

ages by cutting out blocks from 512×512 test images ‘Lena’,

‘Baboon’ and ‘Peppers’ (Fig. 3 & 4). The input images con-

sist of missing blocks of size 16 × 16, 32 × 32 and 64 × 64
samples. The missing areas are then extrapolated using the

proposed algorithm. A fixed patch size of 11 × 11 is used to

fill in the texture regions. As the dictionary elements, DFT

basis functions of size 64 × 64 are used in case of missing

blocks upto 32×32 and then increased to 128×128 for miss-

ing blocks of size 64 × 64. The results of extrapolation are

summarized in the form of PSNR and Structural Similarity

(SSIM) metrics in Tab. 1 which compares a method based

on Confidence map (CM) [13] with the proposed method.

Fig. 3. ‘Lena’ image results. Left: missing blocks of size
16 × 16, Center: Extrapolated using sparse model, Right:
Extrapolated using sparse model with segement selection. For
showing the benefit due to segment selection alone, no texture
patching is employed.
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(a) ‘Peppers’, missing blocks of size 32 × 32

(b) ‘Baboon’, missing blocks of size 64 × 64

Fig. 4. Extrapolation results. Left: Portions of test im-
ages with missing blocks; Center: Extrapolation using Sparse
model only; Right: Extrapolation using proposed method.

For subjective evaluation of extrapolation results, portions of

tested images are depicted in Fig. 3 & Fig. 4.

Compared to sparse modeling without segmentation, an

improvement of upto 0.6 dB in Y-PSNR is achieved for 16 ×
16 missing blocks because of including segment selection in

sparse modeling. The effect of segment selection is evident

in the top-right missing block of ‘Lena’ image (Fig. 3). Here,

modeling using rectangular neighborhood produces a black

patch in the diagonal strip. This is due to the fact that the

64× 64 neighborhood of the missing block contains an unre-

lated black segment at the bottom-right region. The proposed

algorithm excludes the unrelated segment from modeling and

results in a clean strip as illustrated (Fig. 3, right). Similar

reduction of artifacts due to segment selection in the test im-

age ‘Peppers’ for 16 × 16 missing blocks was observed (not

shown in Fig.). The dependancy of patching on segmentation

is reduced by this framework because many structures are es-

timated using sparse model where segmentation is used only

to build a mask for excluding unrelated areas.

The effect of texture extrapolation can be best observed in

the test image ‘Baboon’ (Fig. 4(b)). The blurring caused by

using fixed DFT basis functions, for highly textured regions,

is evident in this image. Because of the loss size of 64 ×
64, significant structural information is also missing in the

input image. The recovered structures (Fig. 4(b), right) are

perceptually plausible and fit seamlessly into the surrounding

visual information. The resulting image appears more natural

and does not contain blurring artifacts.

4. CONCLUSION

We presented a powerful algorithm by combining sparse mod-

eling and structure aware texture synthesis for spatial extrap-

olation that can be used in variety of applications. We showed

that, in case of sparse modeling, the extrapolation quality

can be improved by using structural information. Textured

blocks, containing multiple textures or structural information

are handled using tensor voting. The extrapolated data ap-

pears natural and fit well into the surroundings. The algorithm

is superior to other patch based texture synthesis algorithms,

as it can reconstruct structure within textured areas even for

large unknown blocks.
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