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ABSTRACT

Within the scope of this contribution we propose a novel ef-

ficient spatio-temporal prediction algorithm for video coding.

The algorithm operates in two stages. First, motion com-

pensation is performed on the block to be predicted in or-

der to exploit temporal correlations. Afterwards, in order to

exploit spatial correlations, this preliminary estimate is spa-

tially refined by forming a joint model of the motion com-

pensated block and spatially adjacent already decoded blocks.

Compared to an earlier refinement algorithm, the novel one

only needs very few iterations, leading to a speedup of fac-

tor 17. The implementation of this new algorithm into the

H.264/AVC leads to a maximum reduction in data rate of up

to nearly 13% for the considered sequences.

Index Terms— Video coding, Prediction, Extrapolation

1. INTRODUCTION

In the past few years, the amount of video data transmitted

over digital channels has steadily increased. For this it is

necessary that the video sequences are compressed by an en-

coder in order to reduce the data rate. Fortunately, video se-

quences can be strongly compressed. Most modern hybrid

video codecs as e. g. the H.264/AVC [1] use two different

strategies for compressing the video sequence: prediction of

the video signal to be coded and entropy coding of the pre-

diction residual and the side information. Within the scope

of this contribution we will focus on the first one. In this

step, an estimate of the signal parts to be coded is generated

from already transmitted areas, i. e. previous frames or al-

ready processed regions from the actual frame. Since only al-

ready transmitted areas are used for generating the estimate,

the decoder can predict the signal in the same way as the en-

coder. Thus, instead of transmitting the quantized and entropy

coded original video signal, only the quantized and entropy

coded prediction error has to be transmitted. Therefore, be-

sides the entropy coding, the abilities of a video codec directly

depend on how efficiently the video signal to be coded can be

predicted.

In most modern video codecs the prediction of the signal

part to be coded is obtained by exploiting either temporal or

spatial correlations. Thereby, spatial prediction is obtained by

skillfully continuing the signal from already transmitted re-

gions into the region being processed. On the other hand, the

temporal prediction is performed by applying motion com-

pensation (MC) on the region being coded, as described in

[2]. For this, a region in a previous frame is sought that fits

the area to be coded best. The displacement of this region

then is transmitted to the decoder as side information and

the decoder then can form the prediction signal by taking the

corresponding region from the already decoded frames. Al-

though modern encoders can adaptively switch between spa-

tial and temporal prediction in order to form the best predic-

tor, a combined usage of temporal and spatial correlations

only is applied rarely. Only few existent prediction algo-

rithms exploit both correlations at the same time. As exam-

ples for this group of algorithms the ‘Inter Frame Coding with

Template Matching Spatio-Temporal Prediction’ by [3] or the

‘Pixelwise Adaptive Spatio-Temporal Prediction’ by [4] can

be mentioned.

In [5] we proposed a new spatio-temporal prediction al-

gorithm, the spatial refinement of motion compensation by

Frequency Selective Approximation (FSA). This algorithm is

able to reduce data rate significantly compared to pure tem-

poral prediction. Unfortunately, this algorithm needs many

iterations to form an adequate predictor and thus is compu-

tationally very expensive. We now want to propose a new

algorithm for spatial refinement, the Relaxed Best Approxi-

mation (RBA), which is able to generate the model nearly as

effectively as the original algorithm but with only very few

iterations needed. The algorithm is based on the ‘Best Ap-

proximation’ proposed by [6].

In the next sections we will outline the idea of spatial re-

finement with FSA and especially with the new algorithm in

detail. We will also prove its abilities to improve the predic-

tion quality in simulations with the H.264/AVC encoder and

will show the reduction in computational complexity com-

pared to the algorithm presented in [5].

2. PROBLEM FORMULATION AND BACKGROUND

We consider a block based video coder, operating in line scan

order. Let the block actually being processed be denoted by

area B. This block is joined by 4 blocks that have already

been transmitted and are known to the decoder as well. These



blocks are subsumed in area R. We now regard the so called

projection area P , shown in Fig. 1, of 3×3 blocks centered by

the block B. Besides R and B, this square area contains four

blocks that have not been coded yet. The novel idea of the

spatial refinement proposed in [5] is that first a preliminary

temporal extrapolation is formed by motion compensation for

the block B. By transmitting the motion vector as side in-

formation, the decoder can perform the motion compensation

in the same way. In a second step, a model is generated for

the union A = R ∪ B, called approximation area. Finally

the samples corresponding to B are taken from the model and

are used as predictor. As the model incorporates information

from the temporally extrapolated block B as well as from the

spatially adjacent blocks R this will form a better predictor

than the purely temporal one.

Let the intensities of the samples in area P be denoted by

f [m, n] and the model, representing the refined signal, be de-

noted by g [m, n]. (m, n) represent the spatial coordinates

and area P is of size M × N samples. The parametric model

g [m, n] =
∑

k∈K

ckϕk [m, n] (1)

emanates from a weighted superposition of the two-dimen-

sional basis functions ϕk [m, n] with appropriate weights ck.

The set K covers all basis functions used for modeling.

For the purpose of spatial refinement of the motion com-

pensated signal, the samples of R that are close to B need to

have more influence than the ones far away. This non-uniform

influence is incorporated by means of the later used weighting

function

w [m, n] =


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Hence the block B gets the constant weight µ and the samples

in R get an exponentially decreasing weight with an increas-

ing distance, controlled by the decay factor ρ̂.

The model g [m, n] now should be generated in such a way

as to minimize the weighted approximation error energy

E =
∑

(m,n)∈P

w [m, n] (f [m, n] − g [m, n])2. (3)

According to (3), the model generation for spatio-temporal

prediction can be viewed as an error minimization task. It is

important to notice that the traditional approach of minimiz-

ing the error by taking partial derivatives with respect to the

unknown coefficients ck and equating them to zero leads to

an underdetermined system of equations because the number

of known samples is less than the total number of points con-

sidered. For such problems, as shown in [7], sparsity based

solutions are advocated because they are capable of capturing

important characteristics of a signal. However, direct solu-

tions using l0 quasi-norm as a sparsity measure are NP-Hard

according to [8].
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Fig. 1. Projection area P containing the approximation area

A consisting of area R subsuming the reconstructed blocks

and the block B to be predicted

The Frequency Selective Approximation (FSA) algorithm

from [6] employed in [5] is an iterative error minimization

procedure which produces a sparse solution. It belongs to the

class of Greedy Approximation techniques in which the sig-

nal is approximated in terms of one additional basis function

per iteration. This involves the selection of a basis function

ϕu [m, n] and the computation of the optimal expansion co-

efficient cu corresponding to the selected basis function. In

each iteration, the basis function is chosen in such a way that

the reduction of the weighted residual energy is maximized.

After generating the parametric model g [m, n], the area of

interest is cut out and used as predictor for the block being

coded. For a detailed discussion of FSA, please refer to [5, 6].

The block diagram in Fig. 2 shows the position of the spa-

tial refinement step in a generalized hybrid video encoder.

The deblocking filter, as e. g. used in the H.264/AVC [1], is

an optional feature that can be used in addition to the spatial

refinement without interfering with it. As shown in [5], the

gain obtainable by deblocking adds to the gain obtainable by

spatial refinement. This is since deblocking only improves

the reference frames and therewith motion compensation but

does not incorporate spatial correlations for prediction.

3. BEST APPROXIMATION

This section introduces the Best Approximation (BA), origi-

nally proposed in [6] and discusses its advantages. The ba-

sic idea of BA is close to FSA as in every iteration step, one

basis function is added to the model generated so far. The

basis function selected is, as in FSA, the one that maximizes

the approximation error energy decrement. But unlike FSA

where the residuum is approximated just by the selected ba-

sis function in each iteration step, BA modifies the expansion

coefficients of all the already selected basis functions in order

to produce the best possible approximation using the selected

set. The expansion coefficients for the selected basis func-

tions are calculated by solving a projection problem in least

squares sense. According to approximation theory, such an al-

gorithm can be categorized as an Orthogonal Greedy Approx-

imation whose anatomy is similar to Greedy Approximation

but has a faster convergence [9].

Let g(ν) [m, n] represent the parametric model and K(ν) the

set of selected basis functions in the ν-th iteration step. The
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Fig. 2. Block diagram of a hybrid video encoder with spatial

refinement

new model, in which the coefficients of all the selected basis

functions are updated, can be written as

g(ν+1) [m, n] = g(ν) [m, n] +
∑

u∈K(ν+1)

∆cuϕu [m, n] . (4)

The weights ∆cu can be computed by setting the partial

derivatives of the weighted error energy with respect to all

∆cu to zero. This yields a system of linear equations of size
∣

∣K(ν+1)
∣

∣ for the coefficients ∆cu

∑

(m,n)∈P

w [m, n] (f [m, n] − g(ν) [m, n])ϕk [m, n] =

∑

u∈K(ν+1)

∆cu

∑

(m,n)∈P

w [m, n]ϕk [m, n]ϕu [m, n] , ∀k ∈ K(ν+1)

(5)

Solving this linear system gives all the coefficients ∆cu which

are then used to update the parametric model

c(ν+1)
u = c(ν)

u + ∆cu, ∀ u ∈ K(ν+1). (6)

These steps of selecting one basis function and updating the

expansion coefficients of all selected basis functions are re-

peated until a predefined maximum number of iterations is

reached. By updating the expansion coefficients of all the

selected basis functions in one iteration step, the algorithm

requires a smaller number of iterations compared to FSA.

Relaxation Scheme

The spatial refinement of temporally predicted data depends

on the ability of the parametric modeling to combine the im-

portant characteristics of the regions R and B. Although BA

yields the best possible approximation of union R∪B in each

iteration step, it might not result in a better spatial refinement.

Additionally, in each iteration of BA, a system of linear equa-

tions needs to be solved, which adds computational complex-

ity. In order to tackle these issues, we introduce a relaxation

scheme which does not only improve the refinement perfor-

mance of BA but also provides a reduction in complexity. The

new scheme performs a Relaxed Best Approximation (RBA)

by selecting all the basis functions that provide at least a spec-

ified fraction of the maximum reduction in error energy into

the chosen set for a particular iteration. Therefore, the relax-

ation parameter τ between 0 and 1 is introduced that controls

which basis functions to be added to the model in a certain

iteration step. Thus, the steps of RBA are defined as follows:

1. Select all basis functions ϕu [m, n] that satisfy

∆E(ν)
ϕu

≥ τ · max
ϕk

∆E(ν)
ϕk

(7)

with ∆E
(ν)
ϕu

being the reduction in residual energy by

selecting basis function ϕu

2. Update model g(ν+1) [m, n] according to (5) and (4)

3. Compute new residual and iterate

So, by using RBA, in every iteration step, several basis

functions can be added to the model. This results in a reduc-

tion of the number of iterations needed to set up the model

for forming the predictor and with that the overall complexity

will become a lot smaller than with FSA or BA.

4. SIMULATION SETUP AND RESULTS

In order to evaluate the abilities of the proposed algorithm, we

implemented this new prediction mode into the H.264/AVC

reference software JM 10.2, Baseline Profile, Level 2.0 . For

motion compensation, quarter pixel accuracy is applied at a

search range of 16 pixels and one reference frame. For com-

paring the refined prediction with the original pure motion

compensation and spatial refinement by FSA, the rate control

is switched off and 10 fixed QPs from 16 to 43 are used.

In order to evaluate the prediction quality, the sequences

“Crew”, “Foreman” and “Vimto” in CIF are encoded at 30
frames per second with three different settings: pure motion

compensation for prediction, spatial refinement by FSA [5]

and spatial refinement by the proposed RBA. As the spatial

refinement might not increase the prediction quality for every

macroblock, the encoder has to compare the refined and the

unrefined prediction signal with the original block and has

to signal the decoder if the refinement step is applied. To

account for this, one bit per macroblock is added to the data

for the two refinement algorithms as a worst case assessment

for the emerging additional side information.

The weighting function w [m, n] used for spatial refine-

ment is the same for FSA and RBA with the decay factor ρ̂
chosen to 0.8 and the weighting of the motion compensated

block chosen to µ = 0.5. According to [5], for both the al-

gorithms, the set of basis functions used for model generation

are the functions of the two-dimensional Fourier transform,

since this set is especially suited for natural images. Ac-

cording to the previous experiments, FSA uses 200 iterations,

whereas the proposed RBA uses only 4 iterations to form the

model. For RBA the factor τ is set to 0.5 and 20 basis func-

tions are maximally added to the model in one iteration step.

Fortunately, the above mentioned parameters all are not very

critical and can be varied in a relatively wide range without

heavily affecting the prediction performance.
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Fig. 3. RD-curves for the first 99 P-frames of the used CIF-

sequences at 30 frames per second with direct motion com-

pensation (MC) and spatial refinement by FSA [5] and RBA

Sequence FSA [5] RBA

Avg. Rate Avg. PSNR Avg. Rate Avg. PSNR

Reduction Gain Reduction Gain

“Crew” 7.31% 0.37 dB 6.20% 0.31 dB

“Foreman” 3.20% 0.13 dB 1.42% 0.06 dB

“Vimto” 13.42% 0.66 dB 12.61% 0.62 dB

Table 1. Achievable average relative rate reduction and av-

erage PSNR gain according to [10] for spatial refinement by

FSA and the proposed RBA

In Fig. 3 the rate-distortion curves for the first 99 P-frames

of the considered sequences are shown. For each sequence

the figure contains the curves for the cases that only pure mo-

tion compensation is applied for prediction and that spatial

refinement is used, either with FSA or the proposed RBA.

Obviously, both refinement algorithms lead to a reduction in

data rate needed to obtain a certain quality. Unfortunately, for

the sequence “Foreman” this gain is small and cannot be seen

well in the figure. Hence and to quantify the gain, Tab. 1

lists the average rate reduction and average PSNR gain com-

pared to motion compensation. Both averages are calculated

according to [10] and one can see a maximum reduction in

data rate of up to 13% and a mean reduction of about 7% for

the regarded sequences.

Comparing the improvement introduced by the spatial re-

finement with FSA and RBA, it becomes apparent, that FSA

is slightly better than RBA. But one major drawback of FSA is

the large number of iterations needed to generate the model.

For this reason Tab. 2 shows the mean calculation time per

frame for the spatial refinement for both algorithms. The spa-

tial refinement step was carried out in MATLAB v7.6 on a

Intel Core 2 @ 2.4 GHz. The motion compensated block and

the spatially adjacent blocks are exported to MATLAB for re-

finement. Afterwards the refined block is retransfered to JM

for the further coding steps. According to Tab. 2, we can see

that RBA needs only about 1/17-th of the processing time of

FSA, which could be further improved by solving the system

of equations from (5) more efficiently. Considering this large

reduction in processing time, the small increment in data rate

Sequence Mean time / frame Time Gain

FSA [5] RBA

“Crew” 217.49 sec 13.03 sec 16.69

“Foreman” 214.93 sec 12.15 sec 17.69

“Vimto” 217.07 sec 12.43 sec 17.46

Table 2. Mean processing time per frame for spatial refine-

ment

compared to FSA becomes negligible.

5. CONCLUSION

Regarding the above presented results, one can easily see that

prediction in video coding can significantly gain from using

spatial as well as temporal information to form the predictor.

Within the scope of this contribution we presented a novel

spatial refinement algorithm which produces an average re-

duction of the data rate of up to 13% at maximum for the re-

garded sequences. In addition, this new algorithm needs only

very few iterations to form the predictor and is about 17 times

faster than an earlier proposed algorithm.

Furthermore, our current research is focused on combin-

ing the spatial refinement with more sophisticated prediction

techniques and on a further complexity reduction.
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