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ABSTRACT

We present a robust algorithm for spatial recovery of miss-

ing region in images. The algorithm consists of two stages:

sparse modeling and patch based refinement. We note that a

model based image recovery might not be able to reconstruct

the richness or details in a signal unless the signal truly fits

that model. We show that the reconstruction using a sparse

model provides enough information about the inherent fea-

tures present in the unknown area, using which, a patch based

refinement process can replicate the structure and the natural

texture from the surrounding available samples. The devel-

oped algorithm is tested on a variety of image characteristics.

Significant objective and subjective gains are observed com-

pared to the state-of-the-art.

Index Terms— Image recovery, Texture refinement,

Sparse reconstruction, Error concealment

1. INTRODUCTION

Recovery of missing regions of images are required for many

applications. For example, image and video communications

using block-based coders over error-prone channels may lead

to block losses. Similarly, imperfections in capture, storage

or other processes in an image processing system produce er-

rors which necessitate the use of restoration algorithms that

estimate missing regions. Decoder side recovery techniques

work on the received data without the need for any error cor-

rection data to be transmitted by the encoder. Most algorithms

reported in literature are best suited for either pure structure

or pure texture areas. Although an attempt is made in [1]

to classify the lost blocks as structure or texture and use the

suitable algorithm for each case, the issue of structure within

texture blocks or vice versa is not well addressed. With the

popularity of high resolution content, block sizes larger than

the traditional 16 × 16 are becoming increasingly important

for coding [2] and hence the decoder should be able to deal

with large block errors.

Algorithms for image recovery can be broadly classified

into two categories - Model driven and Data driven. In model

driven recovery techniques, the image samples are assumed

to be emanating from a parametric model. The surrounding

samples of the unknown block are used to estimate the param-

eters of the model, which are then utilized to generate samples

in the unknown area. In recent years, considerable interest

has been paid to sparse image modeling techniques. These

algorithms operate on the intuition that natural images can be

decomposed into sparse combination of basic elements [3].

Sparse modeling techniques are able to successfully capture

the inherent structure but produce blurring artifacts when the

dictionary elements are not tuned to current texture. In order

to counter this effect, techniques have been suggested to up-

date the dictionary elements based on the observed data [4],

adaptive thresholding [5] etc.

In data driven approaches, known data is directly used

to control the filling of unknown areas [6, 7]. In [8], we

proposed Structure-Aware Inpainting, which propagates the

edges detected in known area into the unknown area and

replicates the structure and texture from appropriate loca-

tions. However, it relies on the masks generated by seg-

mentation, which can produce visible artifacts when filling

happens from an incorrect segment. Data driven approaches

provide excellent quality for some images but fail to produce

reasonable results for some others.

In this paper, we combine the main ideas of model driven

and data driven techniques to arrive at a powerful algorithm

for recovering missing data from nonstationary signals. The

proposed approach performs a Markov Random Field (MRF)

based refinement step on the samples recovered by sparse

modeling. The algorithm starts by building a sparse model of

the known surrounding area and extrapolates into the missing

area. Then, using the extrapolated samples as an initialization

for the missing area, a patch based refinement is performed,

replicating the natural structure & texture from the surround-

ing into the missing area. Unlike prevalent data driven al-

gorithms, our approach does not require any segmentation or

edge detection steps. Moreover, the algorithm can be imple-

mented using fixed dictionary elements, thereby eliminating

dictionary updation or adaptive thresholding steps. The al-

gorithm is tested on an extensive set of images with missing

regions containing edges, textures and other image features.
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Fig. 1. Labeling of different regions of an image. A: Known
area; B: Missing area; T : Template; G: Target

2. BACKGROUND

We consider a rectangular neighborhood R that contains un-

known samples in area B surrounded by known samples in

area A. We define a patch to consist of a small subset of

samples in R such that some area comprises of known (or al-

ready estimated) samples T and the others are unknown G,

as shown in Fig. 1. In a certain patch, the known area and the

unknown area form template and target respectively.

Patch based image recovery (PBR) is based on homoge-

nous property of textures that for a generated texture to be

similar to an input texture it is sufficient that all neighbor-

hoods in the generated texture be similar to some neighbor-

hood in the input [9]. In PBR, the location that best matches

the template is searched in the known area and the samples

corresponding to target area are copied. The main issue with

PBR is that the samples in the current target area might not

be correlated to the matched patch location. For instance,

there could be singularities in the form of edges or segment

boundaries inside the target region that is not captured in the

matched location but is evident from the spatially adjacent

samples in known area. Therefore, such a PBR algorithm is

often controlled by segmentation or edge detection. Addi-

tionally, the optimal patch size depends strongly on structure

and texture of the image. In [8], the identified edges are first

propagated into unknown area before patching happens. The

process of edge detection in known area and edge propagation

into unknown area contribute to the instability of such algo-

rithms because the perceivable segments and edges cannot be

well defined mathematically.

In this paper, we propose an alternate solution without

explicity using segmentation or edge detection. We obtain

the necessary structural information from a model based ap-

proach and use this to control the patch based filling. We

recognize that a model based approach provides an estimate

of structure within the missing area, but might not be able

to capture the richness or details in the non-stationary signal.

We postulate that the reconstruction using a sparse model

provides enough information about the inherent structures

present in the unknown area so that the template and target

areas can be matched in the patch based texture refinement

process. The use of initial estimate of target samples along

with template samples can bring back the missing details,

making the reconstruction visually plausible.

Sparse Reconstruction Confidence Map Patching

Post-Processing

Input 
Image

Recovered 
Image

Fig. 2. Block diagram of proposed algorithm. First, the miss-
ing samples are estimated by sparse combination of dictio-
nary elements. Next, patches are selected according to the or-
der specified by confidence map [6] and texture refinement is
performed. Finally, in-loop post processing of matched target
area provides seamless transitions across adjacent patches.
Recovered image is obtained after completing all patches.

3. FRAMEWORK FOR RECOVERY

The pixel intensities of region R can be interpreted as a col-

umn vector f ∈ �N , where N denotes the total number of

samples in R. For capturing the inherent structure present

in known samples of f , it is approximated using only a few

basic elements from a dictionary D. The entries of D could

be overcomplete and are denoted as vectors dk of dimension

N×1. A parametric model consisting of a linear combination

of vectors dk is used for generating the approximation vector

g, so that

g =
∑

∀dk∈K
ck · dk, (1)

where k ∈ K consists of the vectors chosen from D used for

modeling and ck are the model parameters to be estimated.

A vector h of dimension N × 1 is formed by taking known

samples from area A of f and the estimated samples from area

B of g,

h = M1 · f + M2 · g, (2)

where M1 and M2 are matrices of dimension N ×N consist-

ing of 1s at diagonal entries when a sample is selected from

the vector it is operating on and zeros elsewhere. Finally, tex-

ture refinement operates on the vector h by copying samples

from appropriate locations in A to the locations in B resulting

in output samples s,

s = T · h, (3)

where T is a N × N texture refinement matrix. In order to

produce the final image, the unknown parameters ck and T
are to be determined. A joint estimation of ck and T is an

extremely complex task, hence we resort to a simple way of

determining cks first and then calculating T using MRF ap-

proach.

3.1. Initialization using sparse model

A model of the area R, using the samples of A is built by

means of a masking vector m which is defined to contain a

value of one in A and zero in B. The estimation of ck is

done such that the approximation error between the samples
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at known locations of f and the corresponding samples pro-

duced by the model g,

E = (f − g)T · m · mT · (f − g), (4)

is minimized. An isotropically decaying weighting function

[10] is additionally employed in m so that the known samples

in the vicinity of the unknown area get a higher importance

than the samples that are far from it.

Direct minimization of Eq. (4) by setting the partial

derivatives of cost function E w.r.t ck to zero leads to an un-

derdetermined system of equations as the number of known

samples in A is less than the total number of samples in R.

For solving this underdetermined problem, a greedy approach

is taken in which the signal is approximated in terms of one

additional vector from D per iteration [11, 12] resulting in a

sparse representation. In each iteration, the additional vector

is chosen in such a way that the reduction of the weighted

residual energy is maximized. In case the dictionary is com-

posed of basis vectors of �N , Frequency Selective Extrapo-

lation [12], a fast and efficient algorithm that performs sparse

modeling in transform domain, can be employed.

3.2. Patch based Refinement

We note that the patch based synthesis has the ability to re-

construct both structure and texture when a coarse estimate of

structure in the target area is available. We utilize the filling

order determination algorithm proposed in [6] and enhance

it to include already estimated samples through sparse recon-

struction. The gradient is computed for all the samples in

the current patch thus leading to a better isophote direction

(Please refer to [6] for the original algorithm). The priority

of potential patches are computed and the patch with highest

priority is selected for filling.

The filling algorithm searches for a patch in the source re-

gion that is most similar to the template and target area of the

current patch. Through this combined matching, the assump-

tion that the best template matched patch is also the best patch

for copying target samples is relaxed. The best patch is found

by minimizing the following cost function,

J = (x−c)T W(x−c)+λ·(∇x−∇c)T W(∇x−∇c) (5)

where, c is the patch at current location to be filled; x is the

candidate patch in area A; ∇c is the sample-wise gradient

of c; ∇x is the sample-wise gradient of x; W is a diagonal

matrix with a value of w at locations that multiply target sam-

ples and 1 − w at locations that multiply template samples;

and λ is the relative importance of gradient component in the

matching process.

Having found the best patch, a post-processing algo-

rithm is applied to ensure smooth transition between adjacent

patches [8]. This happens in-loop and influences the filling of

future patches.

Image TM CM SP+TM SP+CM Proposal

Airplane 21.27 20.40 21.96 22.08 22.66

Baboon 18.86 18.57 19.52 19.77 20.21

Girl2 26.36 25.10 27.66 27.81 28.52

Lake 19.03 18.77 20.07 20.23 20.72

Lena 24.98 24.92 26.85 26.91 27.53

Peppers 25.96 24.68 26.87 27.29 28.08

Table 1. PSNR(dB) results of recovery using different algo-
rithms denoted as TM: Template Matching; CM: Confidence
Map; SP: Sparse reconstruction.

4. SIMULATION SETUP AND RESULTS

For evaluating the proposed algorithm, we generate input im-

ages by cutting out blocks from standard test images and im-

ages from ‘The Berkeley Segmentation Dataset’. The input

images consist of missing blocks of size 16× 16 and 32× 32
samples. In the case of TM without CM, the filling is done

in a helical order. For TM & CM, patch sizes of 7 × 7 and

11 × 11 are found to be optimal for missing blocks of size

16 × 16 and 32 × 32 respectively. The same patch sizes are

also employed for the refinement step in our proposal.

The relative weight w in Eq. (5) was varied between 0

and 1 and it was found that a value of 0.5 (equal weights to T
and G) gives good subjective results. The value of λ that con-

trols the emphasis of gradient component in patch search was

set to 0.7. For SP, the dictionary elements are composed of

Fourier basis functions of size 64 × 64 and the sparse model-

ing selects 100 bases out of 642 possible bases. Fourier basis

has better extrapolation properties compared to other bases

as shown in [10]. The results of recovery comparing differ-

ent methods are summarized in the form of PSNR metric in

Tab. 1.

For subjective evaluation of recovery results, portions of

test results are depicted. Fig. 3 shows results for test images

‘Lena’ and ‘Baboon’ with 16 × 16 missing blocks (left) and

recovered images (right). In order to examine the recovery re-

sults closer, small image regions of size with single block loss

are shown along with recovered results in Fig. 4. The images

are composed of different features and consists of both tex-

tured and structured regions. Fig. 4(a)-(b) are of size 64 × 64

(a) Lossy (b) Recovered (c) Lossy (d) Recovered

Fig. 3. Recovery results for 16 × 16 missing blocks.

788



with loss size of 32 × 32 while Fig. 4(c)-(f) are 48 × 48 with

loss size of 16 × 16. Notice that in Fig. 4(a)-(b), not only the

texture of flower/trees but also the structure in the form of out-

line is synthesized by our algorithm. Fig. 4(c) contains miss-

ing region of background and foreground rocks. The missing

block in Fig. 4(d) consists of a complex texture on the left

half, relatively flat area on the right half and the edge separat-

ing these regions. Some inaccuracies in the structure recon-

struction can be noticed in this case. Fig. 4(e) & Fig. 4(f) are

composed of cloth texture and linear structure respectively.

The resulting images look natural and do not contain blurring

artifacts.

(a) ‘353013’

(b) ‘Lake’

(c) ‘87065’

(d) ‘167083’

(e) ‘198054’

(f) ‘Peppers’

Fig. 4. Recovery results for 32 × 32 and 16 × 16 missing
blocks. From left: Original image; Original image with miss-
ing block; Recovery using sparse reconstruction; Recovery
using proposed method.

5. CONCLUSION

We presented a powerful algorithm by combining model-

based and data-based recovery techniques that can be used in

a variety of applications like prediction, error concealment,

inpainting etc. We showed that the patch based synthesis

technique has the ability to reconstruct both structure and tex-

ture when a coarse estimate of structure in the target area is

available. For obtaining the coarse estimate, we used sparse

modeling as it can robustly capture the inherent features in

missing regions. The patch based refinement step brings back

the richness and the recovered images appear visually plau-

sible. The algorithm has both subjective and objective gains

compared to the state-of-the-art.
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