
ADAPTIVE MOTION MODEL SELECTION USING A CUBIC SPLINE
BASED ESTIMATION FRAMEWORK

Haricharan Lakshman1, Heiko Schwarz1 and Thomas Wiegand1,2

1Image Processing Department
Fraunhofer Institute for Telecommunications -

Heinrich Hertz Institute
Einsteinufer 37, 10587 Berlin, Germany

2Image Communication Chair
Department of Telecommunication Systems

Technical University of Berlin
Einsteinufer 17, 10587 Berlin, Germany

ABSTRACT

A block based video coder that supports multiple motion
models is proposed. Apart from the typical translational mo-
tion model, we employ parametric models to more accurately
represent complex motions that occur in video sequences.
A novel method for estimating the warping parameters in a
rate-constrained way is presented. A cubic spline framework
is utilized to obtain fractional-accuracy samples for motion
compensation. Efficient motion vector prediction schemes
are developed to maintain the continuity of the predictor
in spite of different motion models. Bit rate savings up to
11.7% in IPPP and 9.3% in Hierarchical B pictures are shown
compared to an improved H.264/AVC reference.

Index Terms— Motion Compensated Prediction, Para-
metric motion models, Cubic Spline Interpolation

1. INTRODUCTION

Motion-compensation (MC) using translational motion mod-
els is well established in international standards like the
H.264/AVC [1]. Increasing the number of motion parameters
has the potential to improve compression efficiency. Some of
the early proposals for the H.264/AVC standard were based
on affine motion models [2, 3]. A technique for using an
affine model to generate additional reference pictures for
MC was proposed in [4]. The approach in [4] effectively
combined translational and affine motion models within one
picture, however, motion clustering into regions is generally
difficult in case of complex motions.

The advantages of using PMMs can be viewed in two
perspectives. From a motion estimation point of view, PMMs
are able to more accurately represent complex motions that
occur in typical video sequences, whereas from an opti-
mization point of view, the additional parameters provide
extra degrees of freedom to reduce the rate-distortion cost.
Although PMMs show gains [5] when applied on previous
standards like the H.263, the advantage might be reduced
in H.264/AVC because of the improved structure. In order

to fully utilize H.264/AVC capabilities and harness the ad-
vantages of PMMs, we propose to include the PMM as a
candidate for MC prediction, which competes with the tradi-
tional translational model for each block. This involves the
transmission of the chosen prediction model and the extra
motion parameters whenever applicable.

The motion vector field when using PMM can consist of
locations in the reference picture that do not fall on the integer
sample grid. In order to get the prediction signal, it is neces-
sary to evaluate the reference picture at non-grid locations. To
this end, discrete-to-continuous mapping techniques [6] are
utilized. In [3], the intermediate locations are evaluated using
a cubic convolution kernel that is fitted to reference samples.
In the H.264/AVC standard, a 6-tap filter is used for estimat-
ing the sample value at half-sample positions and a bi-linear
filter is used for quarter-sample estimation. Compared to the
H.264/AVC filters, the cubic convolution kernel (4-tap) shows
a loss of RD performance for quarter-sample interpolation.
Hence we propose to use cubic splines for the interpolation
and discrete-to-continuous mapping. The spline coefficients
are signal adaptive and are known to provide very good inter-
polation properties [6]. Therefore, even when PMMs are not
used for MC, cubic splines are a good candidate for interpo-
lation of quarter-sample locations in a translational model.

2. VIDEO CODING FRAMEWORK

We use a quad-tree framework in which the block sizes are
allowed to vary from 64× 64 to 4× 4. There has been a con-
siderable gain reported [7] when using block sizes higher than
the traditional 16 × 16, especially for HD material. The en-
coder starts with the biggest block size, evaluates the RD cost
of all possible prediction modes and chooses the mode with
the smallest cost. The block is then split into four sub-blocks
and the RD costs are evaluated for each sub-block. The en-
coder then compares the cost of the parent block with the sum
of the costs of the sub-blocks to decide whether to split or not.
Each sub-block can be further split recursively until the min-
imum allowed block size. At the end, a quad-tree prediction

805978-1-4244-7994-8/10/$26.00 ©2010 IEEE ICIP 2010

Proceedings of 2010 IEEE 17th International Conference on Image Processing September 26-29, 2010, Hong Kong

structure is obtained with the chosen prediction mode for each
block. The transmission of translational MV and Intra mode
direction is same as in H.264/AVC. In case of the parametric
mode, extra ‘warp’ parameters are transmitted, described in
detail in Sec. 4.

Cubic spline based discrete-to-continuous mapping

Splines are piecewise polynomials with pieces that are
smoothly connected together. Within the family of poly-
nomial splines, cubic splines are the most popular in appli-
cations because of their minimum curvature property [6].
B-splines are the basic building blocks for splines. Denoting
the B-spline of degree 3 as β(x) and the spline coefficients as
w(k), the cubic spline model for a particular location x in the
signal s is given by,

s(x) =

k+3∑
k

w(k) β(x − k), (1)

where k = �x − 2�. Given the signal samples, the inter-
polation task is to determine the spline coefficients such that
there is a perfect fit at integer locations. This computation
of the spline coefficients can be implemented very efficiently
using a cascade of first order causal and anti-causal recursive
filters [6]. The spline coefficient computation is done in a
separable way i.e. 1D filtering is applied successively along
the rows and columns of the reference image. These spline
coefficients are further used for gradient computations at ar-
bitrary fractional positions during motion estimation. Using
the same spline model for these different aspects of interpola-
tion and motion estimation makes the design robust.

3. PARAMETRIC MOTION MODEL ESTIMATION

In a translational motion model, the displacement of all sam-
ples in a block is the same. On the other hand, the displace-
ments of the samples in a block can be made to vary accord-
ing to some parameters in case of PMMs. The displacement
of a location x = [x, y]T resulting from a parametric motion
model M(x) with parameter vector c can be represented as,

d(x) = M(x) · c. (2)

For instance, the displacement due to an affine motion is,
[

dx(x, y)
dy(x, y)

]
=

[
x y 1 0 0 0
0 0 0 x y 1

]
· [c0 · · · c5]

T (3)

Let s denote the original frame and s′ the reference frame,
then the prediction error can be expressed as,

u(x) = s(x) − s′(x + d(x))
= s(x) − s′(x + M(x) · c).

(4)

The task of motion estimation is to find the optimal vector
c such that the prediction error for the block is minimized.

To this end, the Gauss-Newton method for minimization of
non-linear equations is utilized. It is an iterative procedure in
which each iteration a linearization of the problem around the
current estimate is performed and the the simplified problem
is then solved.

Although rate-constrained estimation of translational MV
is well-known, the standard techniques so far typically esti-
mate the parameters of PMMs by minimizing the prediction
error without regarding the rate for transmitting the extra pa-
rameters. We propose a novel method which performs an ap-
proximately rate-constrained estimation of the parameter set.
We compute a predictor p for the motion parameters (using
parameters from neighboring blocks) and try to minimize the
motion estimation error while keeping the estimated vector c

close to the predicted value.

Approximately rate-constrained estimation

The algorithm starts by performing a block matching of the
current block with the reference picture. The resulting motion
vector is utilized to initialize the translational component of
the parameter vector c and the higher order components of c

are set to 0. In each iteration, a vector Δci is estimated and
is used to update the solution,

c = ci + Δci (5)

Assuming the update vector Δci is small, the linearization of
the reference picture model can be performed as,

s′(x + d(x)) = s′(x + M(x) · c)

= s′(x + M(x) · ci + M(x) · Δci)

≈ s′(x + M(x) · ci) +

M (x) ·Δci ·

∂s′

∂x

∣∣∣
x+M(x)·ci

. (6)

Denoting

xi = x + M(x) · ci (7)

g(xi) = M (x) ·
∂s′

∂x

∣∣∣
x+M(x)·ci

(8)

the prediction error can now be written as,

u(x) ≈ s(x) − s′(xi) − g(xi)Δci

= u(xi) − g(xi)Δci,
(9)

where, the difference s(x) − s′(xi) is denoted by u(xi).
Considering a set of samples x ∈ A to represent a block in

a video frame and representing the block of u(xi) as a vector
u and the block of g(xi) as a matrix G, the error energy
becomes,

J1 = (u − G · Δci)
T (u − G · Δci). (10)

The difference energy between the estimated motion parame-
ters and the predicted parameters can be written as,

J2 = (ci + Δci − p)T (ci + Δci − p)
= (Δci − q)T (Δci − q).

(11)

806

Assigning a weight of λ to the parameter difference energy,
we define the overall cost function for the optimization as,

J = J1 + λ · J2. (12)

This cost function can be minimized by setting its partial
derivatives with respect to Δci to zero, giving

(GT G + λI) · Δci = (GT u + λq). (13)

Solving this linear system of equations results in the update
vector Δci. The new motion parameters are computed and
the entire procedure is repeated till the maximum number of
iterations is reached. It has to be noted that the described pro-
cedure only finds the local optimum because the actual cost
function (without linearization) is not necessarily convex. In
certain cases, the update Δci cannot be computed (when rank
of matrix in Eq. 13 becomes low, especially for small blocks).
Therefore, after each possible update based on the linearized
model, the actual error energy is computed. Whenever the
error increases compared to the previously computed param-
eters, the iteration is stopped and the last valid estimate is used
for MC prediction.

Although the second term J2 does not exactly represent
the rate of the motion parameter, is provides a bias and a reg-
ularization of the estimate with a similar result as our test on
translational motion vectors have shown.

4. TRANSMISSION OF MOTION PARAMETERS

In order to introduce the option of multiple motion models
for each block, it is necessary to take care of the continuity
of the MV predictors across different motion models. Before
performing motion parameter prediction, we map them to a
suitable space because directly using the estimated parame-
ters is not efficient for transmission. We choose the affine
motion model as an example of PMM and elaborate the next
steps. A direct representation of c0, c1, · · · , c5 suffers from
the fact that c2, c5 (refer Eq. 3) do not really represent the
translational displacement of the entire block, but that of the
top-left sample in that block.

4.1. Transmission of Translational Component

In [5], it is proposed to orthonormalize c before quantiza-
tion. Although, orthonormalization would make the param-
eters more robust to quantization effects, it cannot be directly
used in prediction because of different MV quantization steps.
Hence, we propose to extract the translational shift of the cen-
troid of the current block and quantize it using the same step
size as regular MVs so that it can be predicted using the MVs
of neighboring blocks. The warping parameters c0, c1, c3, c4

are used to compute the displacement of the top-left and top-
right samples relative to the centroid of the considered block.
Such a mapping to corner motion vectors (CMV) enables us

Fig. 1. Example showing the original block (black) and the
warped block (green). The translation of the centroid dcen is
shown by the long red MV. Using dcen, the decoder obtains
the dotted blue block. The relative warping with respect to
the centroid, dleft and dright, are depicted as the corner MVs
in red. The MVs shown in red are transmitted in the bitstream
for the decoder to get back the warped position.

to utilize the framework of MV coding also for the warping
parameters. The entire process of mapping, depicted in Fig. 1,
can be expressed in matrix notation as,
⎡
⎢⎢⎢⎢⎢⎢⎣

m0

m1

m2

m3

m4

m5

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

hx hy 1 0 0 0
0 0 0 hx hy 1
−hx −hy 0 0 0 0
0 0 0 −hx −hy 0
hx −hy 0 0 0 0
0 0 0 hx −hy 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

c0

c1

c2

c3

c4

c5

⎤
⎥⎥⎥⎥⎥⎥⎦

where, (hx, hy) denotes the centroid of the block considered.
The mapped parameters dcen = (m0,m1) contains the trans-
lational shift of the centroid of the block. As discussed earlier,
dcen is treated as a regular translational MV and predicted us-
ing MVs from neighboring blocks before quantization.

4.2. Transmission of Warping Parameters

The parameters dleft = (m2,m3) and dright = (m4,m5)
cannot be similarly predicted using the neighboring blocks
because they depend on the sizes of current and neighbor-
ing blocks. Furthermore, the neighboring blocks may belong
to objects with different motions. Therefore, we utilize the
translational component (that is also available at the decoder
according to Sec. 4.1) to select a subset of the neighboring
blocks that have similar translational MV as the current block.
The warping parameters of the subset is mapped to the cur-
rent block size and predicted using median operator similar
to regular translational MV. The prediction difference is quan-
tized to quarter-sample accuracy and coded using CABAC. In
the actual implementation, the MV predictor is computed first
and mapped to obtain the vector p in Eq. 11 before motion es-
timation starts. This way, we make sure that the MV predictor
used for rate-constrained motion estimation is the same as the
one used in coding. With the proposed transmission scheme,
the MV of a translational block can be predicted even when
all the neighbors use PMM and vice versa.

807

Delta bit rate %
Sequence Resolution Spline Spline+Affine

IPPP IbBbB IPPP IbBbB
BQSquare 416x240 -10.01 -6.96 -11.72 -9.30
BasPass 416x240 -0.05 -0.51 -2.03 -0.92

BBubbles 416x240 -2.28 -1.46 -3.85 -2.76
PtyScene 832x480 -5.04 -2.88 -6.01 -3.95
BQMall 832x480 -1.19 -1.19 -2.46 -1.75
Cactus 1920x1080 0.60 0.03 -3.22 -3.83

Average -3.01 -2.16 -4.88 -3.75

Table 1. Delta bit rate using the proposed system. The
comparison of cubic splines with H.264/AVC interpolation
for quarter sample accuracy is presented under the column
‘Spline’. The results for affine model with cubic spline in-
terpolation in comparison to translational motion model is
shown under the column ‘Spline+Affine’.

5. SIMULATION SETUP AND RESULTS

The reference software used for evaluating our algorithm
is based on the H.264/AVC standard and is on an average
10-15 % better than the JM software due to the usage of
larger blocks [7] and improved encoder optimizations. We
integrated our algorithm into the reference software and mea-
sured the additional gains. We use 100 frames from each of
the sequences to execute the tests. The number of reference
pictures used for MC prediction is set to 4. RD optimization
and deblocking filter are enabled. The codec is executed
at four different quantization parameter settings, namely
QP = 22, 27, 32, 37. The Inter mode includes translational
and affine prediction modes. In the Hierarchical B GOP8
structure, the QP is cascaded according to the layer structure
and the affine prediction mode is only enabled for coding the
P pictures. The translational MVs in case of translational
and affine prediction and the corner MVs in case of affine
prediction are quantized to quarter-sample precision. Within
inter blocks, a mode flag is transmitted, using the CABAC
entropy coding scheme, which indicates whether the block is
coded in translational or affine prediction mode.

The reference codec and the test codec are used to gen-
erate 4 RD points each and the performance improvement is
measured in terms of Bjøntegaard Delta Bit Rate metric. The
test results are shown in Tab. 1. There is a significant overall
bit rate saving provided by the proposed approach. In partic-
ular, the cubic spline interpolation outperforms the 6-tap in-
terpolation (even in a high precision implementation without
intermediate precision loss due to rounding) for most of the
sequences. For some sequences like ‘Cactus’, there is a slight
bit rate increase due to cubic spline interpolation. However,
when affine prdiction is used along with cubic splines, bit rate
savings up to 11.7 % in IPPP and 9.3 % in IbBbB structures
are observed for the tested sequences.

Fig. 2 depicts the relative frequency of selection of the
affine prediction mode in the RD optimized mode decision.
The bar graphs show the percentage of samples in a frame,

Fig. 2. Bar graphs showing the percentage of samples in a
frame predicted using affine model. Four different QPs are
used for each sequence and the results are shown in groups.

averaged over 100 frames, that are predicted using the affine
prediction mode. The statistics are collected for four differ-
ent QPs and are shown in groups, sorted in increasing QP
order in each group. It can be seen that for higher bit rates the
affine prediction mode is selected more often than in the case
of lower bit rates due to the extra cost of side information.
For the sequence ‘BBubbles’, up to 22 % of the samples are
predicted using the affine prediction mode.

6. CONCLUSION

We presented a video coding system with improved interpola-
tion and motion compensation capabilities. The interpolation
filters in the H.264/AVC standard is replaced by a spline based
framework, which provides a discrete-to-continuous mapping
inside integer sample areas. This mapping is useful for esti-
mating the translational displacement and the warping param-
eters. The block-wise decision whether to transmit warping
parameters depends on the RD cost of the different modes.

7. REFERENCES

[1] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview
of the H.264/AVC video coding standard,” IEEE Trans. Circ. Syst. Video
Technol., vol. 13, pp. 560–576, Jul. 2003.

[2] G. Heising, D. Marpe, H. L. Cycon, and A. P. Petukhov, “Wavelet-based
Very Low Bit-Rate Video Coding Using Image Warping and Over-
lapped Block Motion Compensation,” IEE Proceedings - Vision, Image
and Signal Processing, vol. 148, no. 2, pp. 93-101, Apr. 2001.

[3] Nokia MVC Codec. ITU-T Proposal, Feb. 2000.
http://ftp3.itu.ch/av-arch/video-site/

[4] T. Wiegand, E. Steinbach, A. Stensrud, and B. Girod, “Multiple ref-
erence picture video coding using polynomial motion models,” Proc.
Visual Comm. Image Proc, vol. 3309, pp. 134–145, 1998.

[5] M. Karczewicz, J. Nieweglowski and P. Haavisto, “Video coding us-
ing motion compensation with polynomial motion vector fields,” Signal
Processing: Image Commun., vol. 10, pp. 63-91, 1997.

[6] M. Unser, “Splines: A Perfect Fit for Signal and Image Processing,”
IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22-38, Nov. 1999.

[7] P. Chen, Y. Ye, M. Karczewicz, “Video coding using extended block
sizes”, VCEG-AJ23, San Diego, USA, 8-10 Oct. 2008.

[8] M. Unser, A. Aldroubi, M. Eden, “B-Spline Signal Processing: Part
II - Efficient Design and Applications,” IEEE Transactions on Signal
Processing, vol. 41, no. 2, pp. 834-848, Feb. 1993.

[9] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. J. Sullivan,
“Rate-Constrained Coder Control and Comparison of Video Coding
Standards”, IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 13, no. 7, pp. 688-703, Jul 2003.

808

