
Video Coding with Cubic Spline Interpolation and
Adaptive Motion Model Selection

Haricharan Lakshman, Heiko Schwarz and Thomas Wiegand
Image Processing Department

Fraunhofer Institute for Telecommunications -
Heinrich Hertz Institute

Einsteinufer 37, 10587 Berlin, Germany

Abstract—We propose a block based video coder with multiple
motion models. The coder is designed such that each block can be
predicted using the motion model with the best rate-distortion
performance. In such a scheme, there is a significant impact
on the interpolation, motion compensated prediction structure
and the design of motion vector predictors, because neighboring
blocks could have been predicted by different models. We
employ cubic splines to perform interpolation and use the spline
framework to estimate the translational shift and warping of
blocks. We address the problem of adaptive model selection and
enhance the motion vector predictors to account for multiple
motion models. Bitrate savings up to 11.7% are observed for the
tested sequences compared to an improved H.264/AVC reference.

I. INTRODUCTION

Block based video coding with translational motion com-
pensation (MC) is well established in international standards
like H.264/AVC [1]. Moving from 2-parameter (translational)
model to 4-parameter symmetric zoom-rotation model or the
6-parameter affine model has the potential to improve the
video compression efficiency. An affine model was adopted
as part of the global MC in MPEG4-Part 2 ASP. Some of
the early proposals for the H.264/AVC standard were based
on affine motion models [2], [3]. The proposal [3] had rate-
distortion optimized quantization of the model parameters to
simulate lower order Parametric Motion Model (PMM). The
adoption of PMM into mainstream video coding has been
rather slow due to two major reasons - difficulty in estimating
the parameters and additional bits required to transmit more
parameters. With the advances in semiconductor technology
the issue of estimation complexity is becoming less important.
The extra side information required to signal the additional
motion parameters is a more fundamental problem.

The benefits from a higher order PMM can be viewed in two
ways. From a motion estimation point of view, PMMs are able
to more accurately represent complex motions that occur in a
typical video sequence, whereas from an optimization point of
view, the additional parameters provide extra degrees of free-
dom to reduce the rate-distortion cost. Although PMMs show
gains [4] when applied on previous standards like H.261 and
H.263, the advantage might be reduced in H.264/AVC because
of the improved structure. In order to fully utilize H.264/AVC
capabilities and harness the advantages of PMMs, we propose
to include the PMM as a candidate for motion compensated

prediction which competes with the traditional translational
model for each block. This involves the signaling of the chosen
prediction model and the extra motion parameters whenever
applicable.

The motion vector field when using PMM can consist of
locations in the reference picture that do not fall on integer
pixels. In order to get the prediction signal, it is necessary
to evaluate the reference picture at non-grid locations. To this
end, discrete-to-continous mapping techniques [5] are utilized.
In [3], the intermediate locations are evaluated by fitting a
cubic convolution kernel to the reference pixels. The usage
of a cubic convolution kernel, which is a fixed 4-tap filter,
is justifiable in the context of H.263, but compared to a 6-
tap filter in the H.264/AVC standard, a performance loss is
observed. Hence we propose to use cubic splines for the
interpolation and discrete-to-continous mapping. The spline
coefficients are signal adaptive and are known to provide very
good interpolation properties [5]. Therefore, even when PMMs
are not used for MC, cubic spline is a good candidate for
the interpolation of quarter-sample locations resulting from
fractional shifts in translational model.

This paper is organized as follows. The overall framework
of the video coder, in terms of the interaction of interpolation
and MC module, is discussed in Sec. II. The computation of
spline coefficients and the interpolation process is specified in
Sec. III. In Sec. IV, we elaborate the optimized mode selection
strategy and MV predictor design for the case of multiple
motion models. In Sec. VII we provide simulation results
comparing the proposal with a translational model based video
coder. Finally, in Sec. VIII, we conclude the paper.

II. FRAMEWORK

The design of a variable block size coder with multiple
motion models involves many challenges. The estimation of
higher order motion parameters for small blocks tend to be-
come unstable and can be categorized as an overfitting problem
in comparison to global motion estimation. The continuity of
motion vector (MV) predictor which predicts current MVs
using neighboring blocks’ MVs is disrupted because different
motion models could have got selected for the neighbor blocks.
The quantization and entropy coding of motion parameters
significantly affect the RD peformance. In this paper, we

978-1-4244-7138-6/10/$26.00 ©2010 IEEE

Inter
Translative

Inter
Parametric

Intra

Cubic Spline
Interpolation

Input
Block

Reference
Frame

MV

MV

Warp

Direction

Rate-Distortion
Optimized

Mode Selection

Mode
Decision

Fig. 1. Block diagram of the proposed system. In the first step, the reference
frames are converted into spline coefficients. Next, for every input (macro)
block, three possible predictions are computed: using translational motion
model, parametric motion model and intra prediction. The mode that has the
least RD cost is selected.

address these issues and also discuss the optimized selection
of motion model for each block.

We use a quad-tree framework in which the block sizes
are allowed to vary from 64 × 64 to 4 × 4. There has been
considerable gain reported [6] when using block sizes higher
than the traditional 16×16. The encoder starts with the biggest
block size and evaluates the RD cost of all possbile prediction
modes and chooses the mode with the smallest cost. The
block is then split into four sub-blocks and the RD costs
are evaluated for each sub-block. The encoder then compares
the cost of the parent block with the sum of the costs of
the sub-blocks to decide whether to retain the parent block
or to split it. The sub-blocks can be further split recursively
untill the minimum allowed block size. At the end, a quad-tree
prediction structure is obtained with the chosen predciction
mode for each node. Fig. 1 shows the RD optimized mode
decision scheme for each block. The transmission of Inter-
translative MV and Intra mode Direction is the same as in
H.264/AVC. In case of Inter-parametric mode, extra ‘Warp’
parameters are signalled, described in detail in Sec. V.

III. CUBIC SPLINE INTERPOLATION

Splines are piecewise polynomials with pieces that are
smoothly connected together. Within the family of polynomial
splines, cubic splines are the most popular in applications
because of their minimum curvature property [5]. B-splines
are the basic building blocks for splines. Denoting the B-spline
of degree 3 as β3(x) and the spline coefficients as c(k), the
cubic spline model for a particular location x in the signal s
is given by,

s(x) =
k1+3∑

k1

c(k)β3(x− k), (1)

where k1 = dx−2e. Given the signal samples, the interpolation
task is to determine the spline coefficients such that there
is a perfect fit at integers locations. The computation of the

1
11
1

 zz zz
z

1

1

1
)(ks)(kc)(kc

Fig. 2. Computation of spline coefficients. Input signal s(k) passes through
a causal filter (left-to-right direction) to produce intermediate result c+(k).
An anti-causal filter operates on c+(k) (right-to-left direction) to produce the
spline coefficients denoted as c−(k).

spline coefficients can be implemented very efficiently using
a cascade of first order causal and anti-causal recursive filters
[7] as shown in Fig. 2. The spline coefficient computation is
done in a separable way i.e. 1D filtering is applied successively
along the rows and columns of the reference image. Denoting
c−(k) = c(k)/6, the following recursive algorithm [7] is used
to compute the spline coefficients,

c+(k) = s(k) + z1c
+(k − 1), k = 1, · · · , N − 1

c−(k) = z1(c−(k + 1)− c+(k)), k = N − 2, · · · , 0. (2)

In the interpolation step, for each location in the destination the
corresponding set of points in the source image is determined
and image value is computed by a 2D convolution.

Splines have an important property of smoothness. Splines
of degree n are (n−1) times continuously differentiable. This
is a very useful feature not only for interpolation but also
for motion estimation. For the estimation of parameters of
PMMs (e.g. affine warping), gradients need to be computed
at non-grid locations. This can be easily done using the
already computed spline coefficients. Using the same spline
model for these different aspects of interpolation and motion
estimation makes the design consistent and robust compared
the traditional technique of using 3 different filters (a low pass
filter of half-pel interpolation, a bilinear filter for quarter-pel
interpolation and a high pass filter for gradient computation).

IV. PARAMETRIC MOTION MODEL ESTIMATION

Parametric motion models provide better motion repre-
sentation than a translational motion model. Examples of
parametric models include 6-parameter affine, 4-parameter
isotropic-zoom-rotation model etc. We perform the parameter
estimation in two steps:
• Block matching to estimate translational motion of the

block,
• Iterative estimation of warping parameters from the best

block matched position.
The displacement of a location x = [x, y]T resulting from a
parametric motion model B(x) with parameter vector a can
be represented as,

d(x) = B(x) · a. (3)

For instance, the displacement due to an affine motion is,

[
dx(x, y)
dy(x, y)

]
=
[
x y 1 0 0 0
0 0 0 x y 1

]
·

a0

a1

a2

a3

a4

a5

 . (4)

Let s denote the original frame and r the reference frame, then
the motion estimation error can be expressed as,

E(x) = s(x)− r(x + d(x))
= s(x)− r(x + B(x) · a). (5)

The task of motion estimation is to find the optimal vector a
such that the motion estimation error for the block is mini-
mized. To this end, Gauss-Newton method for minimization
of non-linear equation is utilized. It is an iterative procedure in
which each iteration performs a linearization of the problem
around the current solution and solves the simplified linear
system.

We start by performing a block matching of the current
block with the reference picture. The resulting motion vector
is utilized to initialize the translational component of the
parameter vector a and the higher order components of a are
set to 0. In each iteration, a vector ∆ai is estimated and is
used to update the solution,

a = ai + ∆ai (6)

Assuming the update vector ∆ai is small, the linearization of
the reference picture model can be performed as,

r(x + d(x)) = r(x + B(x) · a)
= r(x + B(x) · ai + B(x) ·∆ai)
≈ r(x + B(x) · ai)+

∂r
∂x (x + B(x) · ai)B(x)∆ai.

(7)

Denoting x + B(x) · ai as xi and ∂r
∂x (x + B(x) · ai)B(x) as

g(xi), we get r(x + d(x)) = r(xi) + g(xi)∆ai. The motion
estimation error can now be written as,

E(x) ≈ s(x)− r(xi)− g(xi)∆ai

= u(xi)− g(xi)∆ai,
(8)

where, the difference s(x) − r(xi) is denoted by u(xi).
Considering a set of pixels x ∈ A to represent a block in
a video frame, the motion estimation error energy becomes,

J =
∑
x∈A

(u(xi)− g(xi)∆ai)2. (9)

The error energy in Eq. 9 can be minimized by the standard
least-squares minimization, resulting in the optimum update
vector ∆ai. The new motion parameters are computed accord-
ing to Eq. 6 and the entire procedure is repeated till maximum
number of iterations is reached. It has to be noted that
Gauss-Newton procedure might not converge in certain cases
(especially for small blocks), therefore after each updation
based on the linearized model, the actual error energy is
computed. Whenever the error energy increases compared to
previously computed parameters, the iteration is stopped and
the last good parameters are used as final motion parameters.

V. SIGNALLING OF MOTION PARAMETERS

Efficient encoding of motion parameters is critical for the
overall performance of MC prediction. With the increased
number of motion parameters, the signalling has to be very

efficient in order to compete with the translational mode. It
involves,
• Representation of motion paramters so that they can be

easily encoded,
• Prediction of the parameters using information from

blocks in the neighborhood,
• Entropy coding of the parameters.

In the H.264/AVC standard, where a translational motion
model is used, a significant amount of bit-rate reduction in
MV signalling is obtained by MV prediction. A median filter
operates on the MVs of the causal neighborhood producing
a MV predictor for the current block. The MV difference is
computed and is coded using arithmetic codes. In order to
introduce the option of multiple motion models for each block,
it is necessary to take care of the continuity of MV predictors.

1) Motion Parameter Mapping: Before performing predic-
tion, we map the motion parameters to a suitable space because
directly using the estimated parameters is not efficient for
signalling. Here, we choose the affine motion model as an
example of PMM and consider a block of size M × N .
A direct representation of a0, a1, · · · , a5 suffers from the
fact that a2, a5 (refer Eq. 4) do not really represent the
translational displacement of the entire block, but that of the
top-left pixel in that block. The solution proposed in [4] is to
orthonormalize a0, a1, · · · , a5 before quantization. Although,
orthonormalization would make the parameters more robust
to quantization effects, it cannot be directly used in the
median predictor because translational and affine blocks would
have different MV quantization steps. Hence, we propose to
extract the translational component of the affine motion field
by orthogonalization and quantize this component using the
same step size as regular MVs (e.g. quarter-pel precision).
The warping parameters a0, a1, a3, a4 are used to compute
the relative displacement of the top-left (0, 0) and top-right
(M − 1, 0) pixels of the considered block with respect to
the centroid. Such a mapping to corner motion vector (CMV)
enables us to utilize the framework of MV coding also for
the warping parameters. The entire process of mapping can
be expressed in matrix notation as,
c0
c1
c2
c3
c4
c5

 =

M−1
2

N−1
2 1 0 0 0

0 0 0 M−1
2

N−1
2 1

0 0 1 0 0 0
0 0 0 0 0 1
M − 1 0 1 0 0 0
0 0 0 M − 1 0 1

a0

a1

a2

a3

a4

a5

2) Motion Parameter Coding: The mapped parameters

dcen = (c0, c1) contains the translational shift of the centroid
of the block and has a high variance. As discussed earlier,
dcen is treated as a regular translational MV and predicted
using MVs from neighboring blocks before quantization. The
motion of centroid is subtracted from the displacement of
top-left and top-right corners resulting in dleft = (c2, c3)
and dright = (c4, c5). This leads to lower variance of warp

Coding option Value
Block sizes 64× 64 to 4× 4

RD optimization ON
No. ref. pictures 4
Deblocking filter ON

No. of frames 100

TABLE I
CONFIGURATION SETTINGS FOR REFERENCE AND TEST ENCODERS

parameters which are then quantized to the precision of regular
MVs. The quantized differences are coded using the CABAC
framework [8] of H.264/AVC, in which they are binarized and
entropy coded using an arithmetic coder.

VI. ADAPTIVE SELECTION OF MOTION MODEL

The operational control of the video encoder is an important
problem in video coding. Typical video sequences contain
varying content and motion, necessitating the selection be-
tween different coding options for different parts of the image.
We employ the popular Lagrangian approach [9] for choosing
the best coding mode suited for the current source signal.

In our design, each block can be predicted as Intra, Inter-
translative or Inter-parametric as mentioned earlier. For each
block, the coding mode with associated parameters is opti-
mized given the decisions made for prior coded blocks. For
each candidate prediction mode, the best residual coding mode
is determined and the reconstruction signal is computed. The
Lagrangian mode decision for a block proceeds by minimizing

Jmode = DREC + λmode ·RREC , (10)

where, λmode is the lagrangian parameter for the minimization.
The distortion DREC is measured as the sum of squared
differences of the reconstructed signal and the original signal.
The rate RREC is the total rate for signalling the motion
parameters, mode information and transform coefficients of
prediction residuals.

VII. SIMULATION SETUP AND RESULTS

We evaluate the performace of the proposed system using
12 video sequences from the VCEG/MPEG database using
the IPPP coding structure. The reference software used for
evaluating our algorithm is based on the H.264/AVC standard
and is on an average 10-15 % better than the JM17.0 software
due to larger blocks and encoder optimizations. We integrated
cubic spline interpolation and affine motion model into the
reference software and report the additional gain on top of
the improved reference software. We use 100 frames from
each of the sequences to execute the tests. The number of
reference pictures used for MC prediction is set to 4. The
encoder settings used for the tests are summarized in Tab. I.
The codec is executed at four different quantization parameter
settings, namely QP = 22, 27, 32, 37. In the IPPP structure,
the first picture is coded as Intra using the user set quantization
step QP and the subsequent pictures are coded as P pictures
at a step of QP + 1, with the option of Inter/Intra modes.

Sequence Resolution % Delta Bitrate [10]
Spline Spline+Affine

BasketballPass 416× 240 -0.05 -2.03
BlowingBubbles 416× 240 -2.28 -3.93

BQSquare 416× 240 -10.01 -11.76
RaceHorses 416× 240 0.29 -1.84

BasketballDrill 832× 480 -1.53 -2.59
BQMall 832× 480 -1.19 -2.21

PartyScene 832× 480 -5.04 -5.98
RaceHorses 832× 480 0.17 -1.07
BQTerrace 1920× 1080 -0.59 -1.25

BasketballDrive 1920× 1080 0.76 -0.22
Cactus 1920× 1080 0.60 -2.94
Wisley 1920× 1080 -1.02 -2.64

TABLE II
BITRATE SAVINGS USING IPPP CODING STRUCTURE. THE BITRATE

REDUCTION DUE TO CUBIC SPLINE IN COMPARISION TO 6-TAP
H.264/AVC INTERPOLATION FILTER IS SHOWN UNDER COLUMN

‘SPLINE’. THE OVERALL BITRATE REDUCTION BY INCLUDING AFFINE
MOTION MODEL IS SHOWN UNDER COLUMN ‘SPLINE+AFFINE’.

The Inter mode includes Inter-Translative (IT) and Affine
Inter-Parametric (AIP) prediction modes. Quarter-pel motion
compensation is performed, i.e. the translational MVs in case
of IT & AIP and the corner MVs in case of AIP are quantized
to quarter-pel precision. Within inter blocks, a mode flag is
signalled, using the CABAC entropy coding scheme, which
indicates whether the block is coded in IT or AIP mode. The
reference codec and the test codec are used to generate 4 RD
points each and the performance improvement is measured in
terms of Bjøntegaard Delta Bit Rate (BDBR) metric [10].

The test results are shown in Tab. II. There is a significant
overall bitrate saving provided by the proposed approach.
In particular, the cubic spline interpolation outperforms the
existing 6-tap interpolation in H.264 for most of the sequences.
For some sequences (‘RaceHorses’, ‘BasketballDrive’ & ‘Cac-
tus’) there is a very small bitrate increase due to cubic
spline interpolation. However, the cubic splines provide a good
framework for Affine prediction. When cubic splines are used
along with Affine prediction, bitrate savings are observed for
all the sequences.

In Fig. 3(a), a frame from a video sequence along with
the mode decisions (Fig. 3(b)) are depicted. It is a sequence
with fast motion, where there is a relatively small shift in
the background but the subjects are moving quickly. From the
quad-tree splitting shown in Fig. 3(b), it can be noticed that the
background is coded with large translational blocks (Fig. 3(b),
cyan blocks), whereas the moving subjects are coded with
smaller blocks. Also, many blocks in the fast moving region
are coded using the affine motion model (Fig. 3(b), blue
blocks). During the motion of the subjects, some areas get
disoccluded and are coded as intra blocks (Fig. 3(b), yellow
& orange blocks).

In Fig. 4, RD curves for two sequences are shown. The RD
curves of the reference 6-tap interpolation and cubic spline
interpolation are depicted in red and green, respectively. The
final result when using both cubic spline interpolation and
affine motion model is depicted in blue.

(a) Frame no. 75 of sequence ‘Basketball Pass’

(b) Mode decisions for the frame shown above. Different colors are
used to show different modes. Cyan Blocks: Inter-Translative; Blue
Blocks: Inter-Parametric; Yellow & Orange Blocks: Intra

Fig. 3. Figure showing (a) original frame and (b) prediction mode decisions.

VIII. CONCLUSION

We presented a video coding system with improved in-
terpolation and motion compensation capabilities. The fixed
interpolation filter in the H.264/AVC standard is replaced
by a spline based framework, which provides a discrete-to-
continuous mapping inside integer pixel areas. This mapping
is useful for estimation of translational shift and warping
parameters for video blocks. The decision whether to transmit
warping parameters depends on the RD performance of the
different modes. The performance of the proposed algorithm is
evaluated on MPEG sequences and bitrate savings up to 11.7%
are observed. Future work involves the experimentation with
other discrete-to-continous mapping techniques, improving
coding of warping parameters and handling aliasing/noise in
video sequences.

REFERENCES

[1] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of
the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst. Video
Technol., vol. 13, pp. 560–576, Jul. 2003.

[2] G. Heising, D. Marpe, H. L. Cycon, and A. P. Petukhov, “Wavelet-based
Very Low Bit-Rate Video Coding Using Image Warping and Overlapped
Block Motion Compensation,” IEE Proceedings - Vision, Image and
Signal Processing, vol. 148, no. 2, pp. 93-101, Apr. 2001.

[3] Nokia MVC Codec. ITU-T Proposal, Feb. 2000.
http://ftp3.itu.ch/av-arch/video-site/0002 Gen/

[4] M. Karczewicz, J. Nieweglowski and P. Haavisto, “Video coding using
motion compensation with polynomial motion vector fields,” Signal
Processing: Image Commun., vol. 10, pp. 63-91, 1997.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
30

32

34

36

38

40

42

Bit rate [MBit/s]

Y
 P

S
N

R
 [d

B
]

BasketballPass 416x240

Six tap interpolation
Cubic spline interpolation
Affine MCP

(a) RD curve ‘Basketball Pass’ IPPP

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
28

29

30

31

32

33

34

35

36

37

38

Bit rate [MBit/s]

Y
 P

S
N

R
 [d

B
]

BQSquare 416x240

Six tap interpolation
Cubic spline interpolation
Affine MCP

(b) RD curve ‘BQSquare’ GOP8

Fig. 4. Rate-distortion curves for IPPP and GOP8 structures.

[5] M. Unser, “Splines: A Perfect Fit for Signal and Image Processing,” IEEE
Signal Processing Magazine, vol. 16, no. 6, pp. 22-38, Nov. 1999.

[6] P. Chen, Y. Ye, M. Karczewicz, “Video coding using extended block
sizes”, VCEG-AJ23, San Diego, USA, 8-10 Oct. 2008.

[7] M. Unser, A. Aldroubi, M. Eden, “B-Spline Signal Processing: Part
II - Efficient Design and Applications,” IEEE Transactions on Signal
Processing, vol. 41, no. 2, pp. 834-848, Feb. 1993.

[8] D. Marpe, H. Schwarz, and T. Wiegand, “Context-Based Adaptive Binary
Arithmetic Coding in the H.264/AVC Video Compression Standard,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 13,
no. 7, pp. 620-636, Jul. 2003.

[9] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. J. Sullivan, “Rate-
Constrained Coder Control and Comparison of Video Coding Standards”,
IEEE Transactions on Circuits and Systems for Video Technology, vol. 13,
no. 7, pp. 688-703, Jul 2003.

[10] G. Bjøntegaard, “Calculation of average PSNR differences between RD-
curves,” ITU-T VCEG Meeting, Austin, Texas, USA, Document VCEG-
M33, Tech. Report, Apr. 2001.

