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ABSTRACT

Fractional sample interpolation with FIR filters is commonly
used for motion compensated prediction (MCP). The FIR
filtering can be viewed as a signal decomposition using re-
stricted basis functions. The concept of generalized inter-
polation provides a greater degree of freedom for selecting
basis functions. We implemented generalized interpolation
using a combination of short IIR and FIR filters. An efficient
multiplication-free design of the algorithm that is suited for
hardware implementation is shown. Compared to a 6-tap FIR
interpolation filter, average rate savings of 3.1% are observed.
A detailed analysis of the complexity and memory bandwidth
cycles compared to existing interpolation techniques for MCP
is provided.

Index Terms— video coding, motion compensated pre-
diction, interpolation, B-spline

1. INTRODUCTION

Motion compensated prediction (MCP) using fractional sam-
ple accurate displacements is an established technique in
video coding. When the accessed position does not fall on the
integer-sample grid, it is interpolated using neighboring sam-
ples. In the H.264/AVC standard [1], a 6-tap filter is used to
generate the half-sample positions followed by a 2-tap filter
for generating the quarter-sample positions.

Several techniques for improving the interpolation qual-
ity in MCP have been investigated, e.g., Adaptive Interpo-
lation Filters (AIF) [2], Switched Interpolation Filters with
Offset (SIFO) [3], 1D Directional filters [4]. It was also iden-
tified that a portion of the gains relative to H.264/AVC stems
from the fact that they use higher precision arithmetic. An-
other approach to improve the quality is to use filters with
longer support like 8-tap or 12-tap filters that better approxi-
mate the ideal low pass response. For example, a 12-tap filter
is used for MCP in the first test model of the ongoing HEVC
standardization [9]. Although increasing the filter support
improves the quality of interpolation in general, it increases
the computational complexity and can introduce ringing ar-
tifacts around edges. In [5], we proposed a framework for
Generalized Interpolation based MCP (Fig. 1). We showed

that significant gains can be achieved even when using non-
adaptive short support filters. The reference picture samples
were modelled using O-MOMS basis [6] that have good ap-
proximation properties for a given support length. The com-
putation of model parameters involved IIR filtering and the
fractional sample estimation was achieved using FIR filter-
ing. Due to the continuous nature of the underlying basis
functions, such a framework can be used to generate values
at arbitrary fractional positions (e.g. 1/8, 1/16 or others) and
can be used for translational as well as higher order motion
models.

In this paper, we propose an improved design of general-
ized interpolation for MCP by exploiting the available degrees
of freedom in order to increase the compression efficiency and
reduce the computational complexity compared to the previ-
ous design [5]. Specifically, we reduce the complexity of the
IIR filter stage and provide a multiplication-free design of the
IIR and FIR stages, which is more suitable for hardware im-
plementation. Furthermore, we provide a detailed analysis of
the complexity in terms of the worst case and average number
of operations and cycles for memory accesses and compare it
to the case of commonly used FIR filter based MCP.

2. STRUCTURE OF GENERALIZED
INTERPOLATION

In the classical approach to interpolation, a discrete signal
is mapped onto a continuous signal using interpolating ba-
sis functions, i.e. the basis functions pass through zero at all
integer locations except the origin, where they have a value of
unity (e.g. sinc function). Given a set of samples s[k] corre-
sponding to integer locations k ∈ Z, the task of interpolation
is to estimate the sample value g(x) at a fractional location x.
The classical interpolation formula is of the form,

g(x) =
∑

k∈Z
s[k] · φint(x− k), (1)

where φint is chosen to satisfy the interpolating condition.
Eq. (1) can be viewed as a signal expansion where the ex-
pansion coefficients are the samples themselves. Depending
on the required fractional position x, the basis φint can be
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gin, where it has a value of unity. Eq. (1) can be viewed
as a signal expansion where the expansion coefficients are
the samples themselves. The typical example of φint(x) is
a windowed sinc function and the interpolation process is a
simple convolution (or a low-pass filtering when viewed in
frequency domain). In spite of this elegant setup, there are
many practical issues, most important being the slow decay
of the ideal sinc function. In practice, it has therefore been
tried to approximate the ideal low pass response using finite
support filters. As shown in [4], the short support and zero
crossing constraints for the basis functions are the reasons for
the suboptimality of classical interpolation.

In generalized interpolation [4], the zero crossing con-
straint is not imposed on the basis functions and the problem
is reformulated as,

f(x) =
∑

k∈Z

c[k] · φ(x − k), (2)

where φ(x) are basis functions with basic constraints for sta-
bility and unambiguous reconstruction. The crucial difference
between classical interpolation (Eq. 1) and generalized inter-
polation (Eq. 2) is that the expansion coefficients c[k] are not
directly the data samples s[k] anymore. This apparent draw-
back however offers new possibilities— it allows an extended
choice of basis functions with better properties than that of
the restricted basis functions in classical interpolation. Tra-
ditionally, the problem of determining the expansion coeffi-
cients has been approached using a matrix inversion. It was
recognized in [5] that this problem could also be approached
using simpler digital filtering techniques. We use the inverse
filtering solution provided by Unser in [6]. In terms of digi-
tal filtering, the computation of coefficients from input signal
is an IIR filtering and the estimation of value at a fractional
position x using Eq. 2 is an FIR filtering step.

3. MOTION-COMPENSATED PREDICTION USING
GENERALIZED INTERPOLATION

In the MCP loop of a hybrid video codec, the reconstructed
picture is stored in the reference picture buffer after in-loop
processing steps like deblocking are completed. In this pa-
per, we propose a design in which the reconstructed picture is
IIR filtered and the resulting array of expansion coefficients
(which has the same dimensions as the input picture) is stored
instead, as illustrated in Fig. ??. Then, for motion compen-
sation, this array is FIR filtered when a particular location is
accessed (Eq. 2).

3.1. Basis function examples

There are several desirable properties for selecting a set of ba-
sis functions for the generalized interpolation, namely, short
support, separability, symmetry, regularity, etc. The set of
B-spline functions is a good example for such a basis. They






















Fig. 1. Motion-compensated prediction using generalized in-
terpolation. The IIR filtering block in dashed lines constitutes
the main difference to the standard techniques.

are also easy to manipulate, e.g. for computing derivatives,
integrals or higher support B-splines. In [7], we used the dif-
ferentiability property of B-splines to compute gradients for
warping motion estimation through the same expansion co-
efficients that are used for fractional-position sample estima-
tion. The freedom of choosing the basis functions has been
exploited in [8], where the authors have optimized the ba-
sis function in order to achieve a certain approximation or-
der with the smallest possible support. The resulting basis
functions, called MOMS, have been shown to have very good
interpolation properties [8].

3.2. IIR filtering of reconstructed picture

The expansion coefficient computation can be done by 1D fil-
tering successively along the rows and columns of the recon-
structed image. The IIR filtering can be implemented using a
cascade of causal and anti-causal filters.

We demonstrate the coefficient computation with the ex-
ample of a 3rd order generalized interpolation. Denoting
the number of samples as N , the following recursive algo-
rithm [6] can be used to compute the expansion coefficients,

p[k] = s[k] + z1 · p[k − 1], k = 1, · · · , N − 1 (3)
c[k] = z1 · (c[k + 1] − p[k]), k = N − 2, · · · , 0 (4)

where, z1 is the pole of the discrete IIR filter, which takes
the value of −0.2679 for the cubic B-spline and −0.3441 for
the cubic optimal MOMS basis. When a 5th order basis is
chosen, e.g. quintic splines or quintic MOMS, it can be fac-
torized into 2 sets of causal and anti-causal filters of 1st order.
Each set of filters has exactly the same structure as in the case
of 3rd order, but can differ in the pole values. The boundary
values p[0] and c[N − 1] are specified [6] so that the proce-
dure of converting image samples to expansion coefficients is
reversible.

4. COMPLEXITY ANALYSIS

Compared to the classical interpolation schemes, generalized
interpolation introduces an additional step — the IIR filter-
ing to obtain the expansion coefficients. In this section, it is

Fig. 1. Motion-compensated prediction using generalized in-
terpolation. The IIR filtering block in dashed lines constitutes
the main difference to the standard techniques.

sampled to generate an FIR filter. The interpolation process
is then a convolution of the reference picture samples with the
corresponding FIR filter. In spite of this elegant setup, there
are many practical issues, most important being the slow de-
cay of the ideal sinc function.

In generalized interpolation [7], the zero crossing con-
straint is not imposed on the basis functions and the problem
is reformulated as,

f(x) =
∑

k∈Z
c[k] · φ(x− k), (2)

where φ(x) are basis functions with basic constraints for sta-
bility and unambiguous reconstruction and c[k] are the ex-
pansion coefficients. The major difference to the expression
in Eq. (1) is that the expansion coefficients are not the sig-
nal samples s[k] anymore. The expansion coefficients c[k]
are determined so that the values generated at integer loca-
tions using Eq. (2) match exactly with the signal samples s[k].
This can be done using the inverse filtering approach [8],
where the signal samples s[k] are filtered using the IIR filter,
H(z) = 1/(

∑
n∈Z φ(n)z

−n).

3. SELECTION OF BASIS FOR
MOTION COMPENSATED PREDICTION

The choice of φ(x) directly influences the length of the result-
ing filter support. Using approximation theory, an expression
for the φ’s that have minimal support for a given approxima-
tion order L has been derived in [6]. This class of functions,
which are called Maximal Order Minimal Support functions
(MOMS) is made of linear combinations of the B-spline and
its derivatives. The expression for MOMS is of the form,

φ(x) =

L−1∑

n=0

λn
dn

dxn
βL−1(x− d), (3)

where λ0 = 1 and d is a shift parameter corresponding to the
support of φ(x). Within this class, the minimization of the
asymptotic constant [6] gives rise to the optimal MOMS, also
known as O-MOMS.

Design procedure

1. Denote the required number of FIR taps as L+ 1.

2. Obtain the poles pi of Lth order O-MOMS IIR pre-
filter [6].

3. Choose a simple binary fraction b1 close to actual
dominant causal pole pi.

4. Represent the resulting IIR filter in the form:

H(z) = h0 ·
1

(1− b1z−1)(1− b1z1)
.

where, h0 is a constant. Rewriting it, we get,

H(z) =
1

a1 · z−1 + a0 + a1 · z1
.

5. The FIR filter Q(z) needed to cancel the effect of IIR
filter should satisfy Q(z) H(z) = 1, yielding

=⇒ Q(z) = a1 · z−1 + a0 + a1 · z1,
which when inverse transformed gives,

q[k] = {· · · , 0, 0, a1, a0, a1, 0, 0, · · · }.
6. Compute the unknown weights λn in Eq. 3 such that
φ(k) = q[k] by solving a system of linear equations.

7. Given λn, compute the FIR coefficients by sampling
φ(x) at the required fractional positions.

Interpolation for MCP constitutes a significant amount
of decoder complexity in a hybrid video codec. In order to
employ the concepts of generalized interpolation for MCP,
we have to ensure that the resulting scheme is attractive for
a practical implementation. Specifically, the design should
involve simple fixed point arithmetic and preferably have
multiplication-free filtering for hardware implementation.

The IIR filter, also denoted as prefilter, for O-MOMS of
3rd order has a causal and an anti-causal pole. When increas-
ing the order, the number of poles of O-MOMS increases,
e.g. the 5th order O-MOMS has 2 causal and 2 anti-causal
poles. It can then be implemented as 2 sets of 1st order causal
and anti-causal IIR filters. In order to keep the IIR com-
plexity and memory bandwidth under control and enable a
multiplication-free filtering, we propose to approximate the
frequency response of the O-MOMS prefilter, using only one
causal and one anti-causal pole that is a binary fraction, even
for higher order basis. After selecting the prefilter, we use
the Theorem 1 from [11], that states that there exists a unique
basis in the MOMS family that corresponds to the chosen pre-
filter. Considering the above factors, the filter design is done
according to the algorithm shown in the box above. In this
paper, we design two variants of the filter, namely, 4MOMS
and 6MOMS, that use 4-tap FIR and 6-tap FIR, respectively.
For 4MOMS, pole b1 is chosen to be −0.5 and for 6MOMS,
the pole b1 is chosen to be −0.625.
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4. COMPLEXITY AND
MEMORY BANDWIDTH ANALYSIS

One of the important factors affecting the complexity of an
interpolation scheme is the support of the filter. In our pro-
posed approach, the FIR filters have short support but need
an additional stage of IIR prefiltering. In this section, we an-
alyze the complexity of IIR and FIR separately to compute
the overall complexity and compare it to the case of FIR-only
system with a long support to achieve a similar performance.

The IIR filter resulting from the design process described
in Sec. 3 has one causal and one anti-causal pole. This fil-
ter is implemented in a 2D separable way using fixed point
arithmetic. The output picture is denoted as s[x,y], where
[x,y] indicate the spatial position. The exact representation
of these filters, for the case of 4MOMS with b1 = −0.5, with-
out using multiplications are,
Causal horizontal filter:

h1[x]=(s[x]<<2)-(h1[x-1]>>1)
Anti-causal horizontal filter:

h2[x]=(s[x]<<2)-(h2[x+1]>>1)
h[x]=h1[x]+h2[x]-(s[x]<<2)

Causal vertical filter:
v1[y]=h[y]-(v1[y-1]>>1)

Anti-causal vertical filter:
v2[y]=h[y]-(v2[y+1]>>1)
v[y]=v1[y]+v2[y]-h[y].

To compute the number of IIR operations, we counted the
number of shifts and adds in each stage of IIR filtering, which
lead to 6 shifts and 8 adds per sample of a reconstructed
picture. We use 16-bit representations for filter outputs re-
sulting in 10 bytes of memory read and 8 bytes of memory
write, totalling to 18 bytes. Assuming a memory access of
4 bytes/cycle, it needs 18/4 = 4.5 cycles of memory access
and 6 + 8 = 14 cycles for arithmetic operations, resulting in
18.5 cycles per sample for the entire IIR process.

In a video codec with flexible block sizes, each block gets
predicted using the motion vector (MV) that is indicated in the
bitstream. Typically, a MV uses quarter-sample accuracy, re-
sulting in 16 possible positions including the full-sample po-
sition. Let the sample location of pp in Fig. 2 be (xoffset,
yoffset) with respect to position B1, where xoffset and
yoffset are specified in quarter sample units. The follow-
ing horizontal filtering is performed to generate intermediate
samples aa, bb, cc, dd:

aa=fir_filt(A0,B0,C0,D0,xoffset)
bb=fir_filt(A1,B1,C1,D1,xoffset)
cc=fir_filt(A2,B2,C2,D2,xoffset)
dd=fir_filt(A3,B3,C3,D3,xoffset),

where the function fir_filt() performs a FIR filtering
with the coefficients selected from a table according to the
used offset. The intermediate values are then used for vertical
interpolation, expressed as,
pp=fir_filt(aa,bb,cc,dd,yoffset).

A0       B0   aa   C0       D0 

                          

                          

                          

A1       B1   bb   C1       D1 

            pp             

                          

                          

A2       B2   cc   C2       D2 

                          

                          

                          

A3       B3   dd   C3       D3 

 

Fig. 2. Notation of different positions in a quarter luma sam-
ple resolution. Capital letters denote samples at interger po-
sitions. Fractional position of interest is shown as ‘pp’. In-
termediate positions to be computed are ‘aa’, ‘bb’, ‘cc’, ‘dd’.

The function fir_filt() is called even when either
xoffset or yoffset is equal to 0, in which case it is
a symmetric 3-tap filter. The operations of 6MOMS are simi-
lar to that of 4MOMS. The zero offset case is still a symmetric
3-tap filter but other offsets employ 6-tap filters.

Consider a block size of 4 × 4 to be interpolated using
4MOMS. For vertically filtering each sample position, the
current position along with one sample above and two sam-
ples below are required for the FIR operation. Hence, for the
top row, one row above the top row is required and for the bot-
tom row, two rows below the bottom row are required. This
means that 7× 4 samples are to be generated during the hor-
izontal filtering. The filter to generate half-sample positions
are symmetric, hence, in an implementation with multiplies
(MUL) and adds (ADD), 2 MUL and 3 ADD are needed,
leading to 56 MUL and 84 ADD for the entire horizontal
filtering of 7 × 4 samples. The coefficients for the quarter-
sample vertical filtering are however not symmetric due to
the position of pp in the grid of aa, bb, cc, dd. Therefore,
4 MUL and 3 ADD are needed for each filtering, resulting in
64 MUL and 48 ADD for the entire 4 × 4 block. The total
horizontal and vertical operations would then be 120 MUL
and 132 ADD. This procedure of complexity calculation is
performed for all the 16 positions in a quarter-sample grid for
block sizes from 4 × 4 to 64 × 64. Notice that the overhead
due to samples required for vertical filtering that go beyond
the block boundary decreases as the block size increases. The
worst case cycles, including memory accesses, are then ex-
pressed as a percentage of worst case cycles that would be
needed for a 6-tap FIR-only system, depicted in Fig. 3.

Notwithstanding the lower arithmetic complexity, the in-
clusion of a prefilter can affect the overall latency of the MCP
process. The impact of using FIR-only filters with long sup-
port can be reduced using SIMD architecture compared to se-
quential execution. Therefore, the complexity of generalized
interpolation has be analyzed with more details about the un-
derlying architecture. However, the operations on different
rows or columns are independent of each other in each direc-
tion prefiltering. Hence, the IIR filtering of different rows or
columns can be done in parallel.
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Fig. 3. Worst case cycles of 4MOMS, 6MOMS and 12-tap
FIR per fractional sample, expressed as a percentage of worst
case cycles of a 6-tap FIR filter. Each category in the x-axis
represents a block size.

5. SIMULATION RESULTS
The RD performance of the proposed generalized interpola-
tion is evaluated using test sequences defined in the Call for
Proposals (CfP) issued by the JCT-VC [10]. Two constraint
sets restricting the coding structures are defined in CfP as fol-
lows: a) GOP8 random access: structural delay not larger than
8-pictures, b) Low delay: no picture reordering in decoder.
The software base for our experiments is the Test Model un-
der Consideration [9] for the ongoing HEVC standardization.
All the sequences from the dataset are used for testing and the
entire sequences with up to 500 frames are coded.

We compare the 4MOMS and 6MOMS cases with two
reference interpolation methods, the 6-tap and the 12-tap
DCT-based FIR filters of the current HEVC draft [9] in the
high efficiency setting. The improvements are measured in
terms of the average bit rate difference over all rate points
using the Bjøntegaard Delta Bit Rate [13] metric. The 6-tap
filter used is around 3% better compared to the interpola-
tion filter in H.264/AVC. The simulation results for GOP8
with hierarchical B pictures can be found in Tab. 1 and the
low delay case is shown in Tab. 2. In low delay scenario,
6MOMS gives an average BD rate reduction of 1.9% com-
pared to the 12-tap filter and 3.8% compared to the 6-tap
filter. Gains up to 16.5% are observed compared to the 12-tap
filter for the sequence BQSquare. Some sequences like Par-
tyScene, BQTerrace, BQMall also show large performance
gains, whereas the gains for other sequences are moderate.
For the Class E sequences, in the low delay scenario, how-
ever, a marginal loss is observed. These sequences are noisy
and an improved interpolation results in noisy prediction sig-
nal leading to a performance loss. The source code of our
implementation, complexity analysis and the test results are
available online [12].

6. CONCLUSION

Generalized interpolation using MOMS basis for MCP can
provide improved coding efficiency compared to FIR filter
based interpolation. The improvements are mainly observed
for video sequences with fine spatial details. The worst case

GOP8 Y-BD bit rate %
Ref 12-tap FIR Ref 6-tap FIR

6MOMS 4MOMS 6MOMS 4MOMS
Class A 0.0 0.1 0.1 0.1
Class B -0.2 0.0 -0.4 -0.3
Class C -0.9 -0.1 -3.2 -2.4
Class D -1.7 -0.0 -5.8 -4.2
Average -0.7 0.0 -2.5 -1.9

Table 1. GOP8 random access coding: BD rate comparison
of 6MOMS and 4MOMS to 12-tap and 6-tap filters.

Low Delay Y-BD bit rate %
Ref 12-tap FIR Ref 6-tap FIR

6MOMS 4MOMS 6MOMS 4MOMS
Class B -0.9 -0.3 -1.2 -0.6
Class C -2.5 -1.2 -5.2 -3.9
Class D -5.1 -2.3 -9.4 -6.9
Class E 1.4 0.8 1.4 0.7
Average -1.9 -0.8 -3.8 -2.7

Table 2. Low delay coding: BD rate comparison of 6MOMS
and 4MOMS to 12-tap and 6-tap filters.

complexity of bidirectional IIR along with 6-tap FIR is shown
to be less than increasing the FIR support to 12. However, the
latency involved in the MCP may increase due to an addi-
tional IIR prefiltering stage. Parallel processing can be used
to independently 1D filter different rows or columns to reduce
the latency.
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