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ABSTRACT

Local features are widely used for content-based image retrieval and
object recognition. Most feature descriptors are calculated from the
gradients of a canonical patch around repeatable keypoints in the
image. In this paper, we propose a technique for designing quanti-
zation matrices that reduce the mean squared error distortion of the
gradient derived from DCT-encoded canonical patches. Experimen-
tal results demonstrate that our proposed patch encoder greatly out-
performs a JPEG encoder at the same encoding complexity. More-
over, our quantization matrices achieve lower gradient distortion and
larger number of feature matches at the same bit-rate.

Index Terms— Image compression, image matching, gradient,
quantization

1. INTRODUCTION

Many content-based image retrieval and augmented reality appli-
cations require the use of local image features. Examples of these
robust local features include Scale-Invariant Feature Transform
(SIFT) [1], Speeded Up Robust Features (SURF) [2] and Com-
pressed Histogram of Gradients (CHoG) [3].

In an image matching framework, keypoints are detected from
database and query images. These keypoints should be shift, scale
and rotation invariant and also should be repeatable in different im-
ages of the same scene. After that, feature descriptors are calculated
for every keypoint. Matching between two descriptors is evaluated
using a suitable distance metric such as L2 norm. All the above-
mentioned feature descriptors [1, 2, 3] share the common framework
that the descriptor consists of histograms of gradients in a patch lo-
cated around the detected keypoint. For scale and rotation invari-
ance, patches are oriented so that the maximum gradient is along
the same direction and resized according to the scale of the detected
feature. We refer to these oriented and scaled patches as canonical
patches.

For applications where data are transmitted over a network for
feature detection and image matching, it is desirable that the amount
of data sent is as low as possible. The authors in [4] compare differ-
ent solutions used to compress feature descriptors, especially SIFT.
In our previous work [5], we present an initial study showing that
one can alternatively transmit the compressed canonical patch and
perform descriptor computation at the receiving end with only mi-
nor loss in performance. This has the advantage of allowing in-
teroperability between systems using different feature descriptors.
Also, moving descriptor computation to the receiving end is prefer-
able when, e.g., a server in the cloud has more processing power
than a mobile device acquiring the query image. A conventional im-
age coding technique based on adaptive block-size discrete cosine
transform (DCT) was used for patch encoding in [5].

In this paper, we propose a new patch encoder, designed for the
specific requirements of an image matching system. Preserving a
good visual quality is not important. However, it is important to
preserve the feature descriptors calculated from the patch. We de-
fine a new distortion metric based on the patch gradients and opti-
mize the rate-distortion performance according to this metric. This
is achieved through designing a quantization matrix that preserves
the patch gradients.

The remainder of the paper is organized as follows. Section 2
presents our proposed patch encoder and the modifications we apply
to account for the requirements of an image matching system. In
Section 3, we explain how to design a quantization matrix that pre-
serves the patch gradients. Finally, in Section 4, we present experi-
mental results showing the performance of the proposed quantization
matrix in terms of lowering the distortion in the patch gradients and
achieving more feature matches at the same bit-rate.

2. PATCH ENCODER

Since patches have different statistics and are used for different ap-
plications from natural images, We build our own Patch ENCoder
(PENC) exploiting the fact that we only care to preserve the patch
gradients since these gradients are used in the calculation of many
local feature descriptors (SIFT, SURF, CHoG, etc.). The block dia-
gram of PENC is shown in Fig. 1.

First, we extract canonical patches from the input image, by
running keypoint detection algorithm based on detecting maxima
in a difference of Gaussian (DoG) scale-space representation. The
patches are extracted at a canonical scale and are oriented so that
the maximum gradient is along the same direction. To ensure send-
ing the patches at a reasonable bit-rate, patches are sampled using a
16 × 16 grid. However, we upsample the decoded patches to size
32 × 32 using bilinear interpolation before computing the corre-
sponding descriptors to improve the matching performance.

To ensure low complexity and easy hardware implementation for
PENC, we use an encoding pipeline similar to JPEG [6]. The first
stage in PENC is a pre-processing stage which consists of Gaussian
blurring of the patch followed by DC removal. Gaussian blurring
adds more robustness to the patch against sub-pixel shifts between
matching patches. DC can be discarded since only patch gradients
are used for descriptor computation.

We then apply a 2-D 16×16 DCT on the pre-processed patches.
Having the whole patch as a single transform block avoids blocking
artifacts that may introduce false patch gradients. Each DCT coeffi-
cient is quantized using a uniform scalar quantizer where the quanti-
zation step is defined by the corresponding value in the quantization
matrix Qmat. Qmat is multiplied by a quantization constant Q to
adjust the overall bit-rate.

The final stage in PENC is entropy coding. PENC only encodes
the AC coefficients as DC is already removed from the patch. Similar
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Fig. 1. Block diagram of the proposed patch encoder PENC. Patches
are pre-processed through Gaussian blurring and DC removal. DCT
coefficients are calculated and quantized using a quantization matrix
Qmat. Finally, the quantized coefficients are entropy coded.

to JPEG standard, the quantized AC coefficients are zigzag scanned
and then converted to symbols which concatenate a run of zeros and
the category of the following magnitude. We refer to these symbols
as (R,C) symbols. Refinement bits are added to obtain the exact
magnitude of the AC coefficient. We fix the maximum run to be 16
and category to be 10. We also have two special symbols. The first
symbol specifies the end of the patch. The other symbol indicates
that we have 16 consecutive zeros and is used to chop a run longer
than 16 into shorter runs. We train a Huffman table for these 162
symbols to obtain the variable length codewords for PENC.

We append a small header before PENC compressed bitstream.
This header specifies Q and the number of patches and is used in
the decoding process. For applications that require geometric con-
sistency check of the image matching results, the final bitstream also
includes the locations and orientations of the keypoints. The loca-
tions data are encoded using the method in [7] while the orientations
are uniformly quantized and encoded using fixed length code.

3. QUANTIZATION MATRIX DESIGN

Based on the results of rate-distortion theory and reverse water-
filling for optimal bit-rate allocation among transform coefficients,
we know that using a constant quantization matrix (Qmat is the all
ones matrix) results in the best rate-distortion performance assum-
ing high bit-rate regions and using mean squared error (MSE) as the
distortion measure.

We use N × N signals and refer to the original and quantized
versions of the signal as f and fq respectively. To account for the
distortion in the gradients of the signal due to quantization, we define
a cost function Jgrad as the MSE in the signal gradients as follows

Jgrad =
1

N2

N∑
i=1

N∑
j=1

∥∥∥(∇f)ij − (∇fq)ij

∥∥∥2

(1)

Hence, the gradient SNR (GSNR) is defined as

GSNR = 10 log10
(
c2/Jgrad

)
(2)

where c is an arbitrary constant. We use c = 255 to match the
convention used for regular PSNR of 8-bit images. If e is the error
between f and fq (i.e., e = f − fq), the MSE distortion between f
and fq can be calculated from the DTFT domain as

JMSE ∝ 1

4π2

∫ ωx=π

ωx=−π

∫ ωy=π

ωy=−π

φee (ωx, ωy) dωxdωy (3)

where φee is the power spectral density (PSD) of e. Using the prop-
erties of DTFT, we can write

Jgrad ∝ 1

4π2

∫ π

−π

∫ π

−π

φee (ωx, ωy) .
(
ω2
x + ω2

y

)
dωxdωy (4)

Note that (4) can be viewed as filtering the PSD of e with a
linear filter H such that

|H (ωx, ωy)| =
√

ω2
x + ω2

y (5)

Thus, if we were to encode the signal in the 2-D Fourier domain, we
would expect a quantization matrix

Qmat (ωx, ωy) ∝ 1

|H (ωx, ωy)| =
1√

ω2
x + ω2

y

(6)

While (6) gives us a first insight and general guidance, addi-
tional issues must be addressed to come up with the best Qmat for a
practical patch encoder. First, PENC uses a type-II DCT [8] rather
than a Fourier transform. Second, most practical implementations
for gradient calculation use the simplest finite gradient filter with
impulse response [−0.5 0 0.5] horizontally and vertically. The fre-
quency response of this gradient filter is far from ideal. Third, the
feature descriptors are calculated on an upsampled version of the de-
coded patch. Finally, we would like to take into account how filtering
operations are performed near the borders of the patch.

To account for all the previous practical considerations, we for-
mulate the problem in discrete domain and represent filtering, inter-
polation and DCT transform using matrix multiplications. We con-
vert f and fq to column vectors f and fq via column-wise scanning.
Both f and fq are of length N2. The horizontal and vertical gradients
can be calculated with a [−0.5 0 0.5] filter through multiplication
with matrices Gx and Gy shown in Fig. 2 for N = 4. Consider the
discrete gradient cost function Jdg

Jdg = ‖Gx (f − fq)‖2 + ‖Gy (f − fq)‖2
= (f − fq)

T GT
x Gx (f − fq)+ (f − fq)

T GT
y Gy (f − fq)

= (f − fq)
T W (f − fq), (7)

where W = GT
x Gx +GT

y Gy

Since we are interested in preserving the gradients in the patch
upsampled by two horizontally and vertically, we define the bilinear
interpolation matrix B of dimensions 4N2 × N2. Fig. 2 shows an
example matrix B for the case of N = 4. We are interested in
minimizing the cost function Jdgu which depends on the error in the
gradients between the upsampled original patch and the upsampled
quantized patch. Note the change in dimensions of Gx and Gy to
be 4N2 × 4N2.

Jdgu = (Bf −Bfq)
T W (Bf −Bfq)

= (f − fq)
T BTWB (f − fq) (8)

Since quantization is performed in the DCT domain, we refer
to the 2-D DCT transform matrix as T (see Fig. 2) and the DCT
coefficients of f and fq as c and cq respectively.

Jdgu =
(
T−1c−T−1cq

)T
BTWB

(
T−1c−T−1cq

)
= (c− cq)

T TBTWBTT (c− cq) (9)

Diagonal elements in TBTWBTT represent the relative im-
portance of each DCT coefficient in the cost function. We define
the matrix S = TBTWBTT at diagonal elements and S = 0
elsewhere. Elements in S are normalized such that

∑N2

k=1Skk = N2.
Similar to (6), assuming that we are operating in the high-rate
regime, the quantization matrix that minimizes Jdgu at a specified
bit-rate is given by

Qmatk =
Q

hk
, where hk =

√
Skk and k = 1, ..., N2

(10)
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Fig. 2. Matrices used in Qmat design
(N = 4): Gradients Gx and Gy, DCT
transform T and bilinear interpolation B. Fig. 3. Proposed gradient-preserving Qmat for PENC. N = 16 and Q = 16.

The normalization of S results in the same total weighting for
DCT coefficients as the identity matrix I. This ensures fair compar-
ison between Qmat and the constant quantization matrix when both
matrices are scaled up by the same Q. Finally, Qmat is arranged as
an N × N matrix. Fig. 3 presents Qmat generated using our pro-
posed technique and used in PENC (N = 16 and Q = 16).

4. EXPERIMENTAL RESULTS

We evaluate our scheme in the context of the ongoing standardiza-
tion efforts, Compact Descriptors for Visual Search (CDVS) [9] con-
ducted by the Motion Picture Experts Group (MPEG). Experiments
are performed using images from the CDVS dataset. These images
are divided into five classes to cover different image matching ap-
plications. These classes are text/graphics, museum paintings, video
frames, buildings/landmarks, and common objects.

4.1. Rate-Distortion Performance

We vary the quantization constant Q ∈ {16, 32, 64, 128, 256} to
cover the whole bit-rate range. A different Huffman table is trained
for each Q in the cases of constant Qmat and the proposed Qmat
using the (R,C) statistics generated from encoding the patches of
5000 images from the distractor images used in CDVS evaluation
(not part from the CDVS dataset). This guarantees fair comparison
in entropy coding between different schemes.

Fig. 4 shows sample images from the CDVS dataset. The left
image is from the text/graphics class and the right image is from the
buildings/landmarks class. We extract 200 patches with the highest
Hessian score from each image. In Fig. 5, we show the first 30 origi-
nal patches from each image. The original patches are encoded with
two variants of PENC; the first uses constant Qmat and the second
uses the proposed Qmat.

We plot the rate versus gradient SNR curves for the patches
of the sample images. Gradient SNR (GSNR) is calculated based
on (2) while using 1

N2 Jdgu (9) instead of Jgrad to take all practical
considerations into account. We observe a gain of 0.8 dB in GSNR
at high rates due to the proposed Qmat. Conventional JPEG encod-
ing of the patches (using MATLAB’s implementation) is plotted for
comparison. Both variants of PENC achieve a large improvement of
more than 4 dB over JPEG. However, the gain due to the gradient-
preserving quantization matrix is relatively modest.

4.2. Feature Matching Experiment

To study the effect of using the proposed Qmat on feature match-
ing, we conduct the pairwise matching experiments described in the
CDVS evaluation framework. This includes matching of 10319 pairs
of images from all the five classes defined in the CDVS dataset.
RANSAC [10] is used for geometric consistency check. Since, we
are expecting improvements only for high bit-rate patches, we use
a small quantization constant Q and vary the bit-rate by varying the
number of encoded patches. We extract a maximum of 600 patches
per image, arrange them in descending order of their Hessian score
and at each bit-rate point we only encode a subset of these patches.

Fig. 6 shows the average number of feature matches per image
averaged over all classes in the CDVS dataset. Query size includes
encoded patches and geometric verification data. We use the smallest
value of Q = 16 for comparing the performance of PENC with con-
stant Qmat and with the proposed Qmat. The points on the curves
correspond to sending 50, 100, 200, 300, 400 and 600 patches per
image. The results show the improvement in feature matching due to
the proposed Qmat. We achieve around 5% bit-rate reduction at the
same average number of feature matches. Around 20 − 30% of the
matches are discarded during geometric verification; however, pre-
RANSAC and post-RANSAC results show the same improvement.

On the image matching level, we declare that two images match
if they have 6 or more post-RANSAC feature matches. Comparing
the use of constant Qmat and the proposed Qmat in image match-
ing, we find that both matrices result in very similar performance.
Investigating image matching for different classes, the video frames
class is the easiest to match with a true positive rate of 98% at the
largest query size point, while the buildings/landmarks class is the
most difficult with a true positive rate of only 77% at the largest
query size point.

(a)                                             (b)

Fig. 4. Sample images from the CDVS dataset. (a) text/graphics
class and (b) buildings/landmarks class.
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Fig. 5. Sample patches and rate-GSNR curves for the images in Fig. 4. (a) text/graphics class and (b) buildings/landmarks class
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Fig. 6. Pairwise matching experiment for high bit-rate patches. (a) pre-RANSAC and (b) post-RANSAC.

Performing the same experiment at Q = 32, we observe that the
gain due to the proposed Qmat is decreasing and the performance
of constant Qmat and the proposed Qmat are nearly the same. This
indicates that in feature matching, our proposed Qmat is only useful
for high bit-rate patches which is the important region for applica-
tions where the matching performance has higher priority than the
patches bit-rate. As we increase Q (low bit-rate patches), we ob-
serve that constant Qmat has better performance than the proposed
Qmat in feature matching. This is because at large Qs, the differ-
ence between the DCT coefficients error variance is large and our
assumptions in Section 3 are no longer valid.

5. CONCLUSIONS

We present an efficient method for encoding canonical image
patches intended for the calculation of local feature descriptors.
The proposed patch encoder uses a 16 × 16 DCT and a gradient-
preserving quantization matrix.

Experimental results show that the proposed patch encoder out-
performs a JPEG encoder in terms of gradient SNR by more than
4 dB at the same bit-rate. Using gradient-preserving quantization
matrices can improve the feature matching performance at high bit-
rates. Our results show a 5% bit-rate reduction for the same average
number of feature matches.
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