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ABSTRACT

This paper proposes an image interpolation algorithm exploit-
ing sparse representation for natural images. It involves three
steps: (a) obtaining an initial estimate of the high resolution
image using linear methods like FIR filtering, (b) promot-
ing sparsity in a selected dictionary through thresholding and
(c) extracting high frequency information from the approxi-
mation and adding it to the initial estimate. For the sparse
modeling, a shearlet dictionary is chosen to yield a multi-
scale directional representation. The proposed algorithm is
compared to several state-of-the-art methods to assess its ob-
jective as well as subjective performance. Compared to the
cubic spline interpolation method, an average PSNR gain of
around 0.7 dB is observed over a dataset of 200 images.

Index Terms— Interpolation, Sparity, Shearlets

1. INTRODUCTION

Image interpolation refers to generating a High Resolution
(HR) image from an input Low Resolution (LR) image. Sig-
nal processing theory for band limited signals advocates sam-
pling higher than Nyquist rate and a sinc interpolation [1,
2]. The assumption of band-limitedness does not hold for
most images, due to the existence of sharp edges. However,
conventional schemes adhere to this philosophy and approxi-
mate the ideal low pass filter to produce acceptable results for
many practical applications. Techniques like bilinear, bicu-
bic interpolation, etc., are some popular examples that have
low computational complexity. Extending the sampling the-
ory to shift-invariant spaces without imposing band-limit con-
straint has led to a generalized interpolation framework, e.g.,
B-spline [3] and MOMS interpolation [4] that provide im-
provements in image quality for a given support of basis func-
tions. However, these linear models cannot capture the fast
evolving statistics around edges. Increasing the degree of ba-
sis functions in these linear models help to capture higher or-
der statistics but result in longer effective support in the spa-
tial domain and hence produce artifacts like ringing around
edges, etc.

To improve the linear models, directional interpolation
schemes have been proposed that perform interpolation along
the edge directions, e.g., NEDI [5]. It is achieved through
computing local covariances in the input image and using
them to adapt the interpolation at high resolution, so that the
support of the interpolator is along the edges. However, the
resulting images still show some artifacts. The iterative back-
projection [6] technique improves image interpolation when
the downsampling process is known. However, the downsam-
pling filter may not be known in many cases, or the input im-
age may be camera captured, where the optical anti-alias filter
used within the sampling system is not known during the sub-
sequent image processing stages. Therefore, it is desirable to
design a method that does not rely directly on the knowledge
of the downsampling process.

In this paper, we recognize the fact that linear models
like FIR filter based interpolation are faithful in interpolating
the low frequency components but distort the high frequency
components. The distortion in high frequencies is considered
as noise and reduced using an iterative denoising [7] algo-
rithm that makes use of sparity priors [8]. In underdeter-
mined problems like image interpolation, sparsity priors can
be useful to exploit the geometric structure of desired solu-
tions while satisfying problem constraints. The domain for
sparse representation can be fixed or learned using training
data [9]. Here, we use a fixed transform, namely, the shear-
let transform [10, 11]. Shearlet elements have anisotropic di-
rectional characteristics, important for modeling image fea-
tures. Unlike other fixed transforms like curvelets [12] or
contourlets [13], they provide a consistent design in contin-
uous as well as discrete domain.

2. FRAMEWORK FOR HIGH FREQUENCY
SYNTHESIS

The proposed framework, depicted in Fig. 1, follows the
principle of image recovery through iterative denoising [7].
This principle has been previously applied to image interpo-
lation [14], but for a fixed observation model that requires
the LR image to be the lowpass subband of a specific wavelet
transform. As stated earlier, it is desirable to have a method
that does not assume a specific downsampling process. There-
fore, we redesign the setup for typical anti-aliased LR images.
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Fig. 1: Framework for image interpolation. A linear model, e.g.,
FIR filter is used to produce an initial upsampled image. Then, high
frequency components are extracted after a sparsity promoting step
and used to refine the initial upsampled image.

Consider an input LR signal of dimension N × 1, repre-
sented as a vector s ∈ RN . The first stage of the proposed
framework involves a conventional upsampling, e.g., using
an FIR filter based interpolation, to produce an initial approx-
imation u ∈ RM , where M > N . It can be expressed in
vector notation as,

u = U · s, (1)

where, the rows of the matrix U specify the filter coefficients
used to generate the samples of u. Then, an iterative proce-
dure is followed, in which an estimated refinement signal h(i),
where i represents an iteration number, is added to the upsam-
pled signal u to produce a refined signal x(i), i.e.,

x(i) = u+ h(i), (2)

with h(0) initialized to the zero vector. Next, a sparsity pro-
moting denoising step operates on x(i) to produce an approx-
imation a(i). It is realized via a forward transform, hard-
thresholding and inverse transform. However, we assume that
the low frequency components of RM are faithfully upsam-
pled by the filter in U and hence do not want to alter those
components, but use the high frequency components of the
denoised signal a(i) to refine the upsampled picture. To this
end, the low pass components of the signal a(i) are deter-
mined by downsampling it to RN and upsampling it back to
RM . Denoting the downsampler as D, the low pass com-
ponents are computed as U · D · a(i). The high frequency
part h(i+1) is determined by subtracting the low pass compo-
nents, i.e.,

h(i+1) = a(i) −P · a(i), (3)

where, P = U · D. Ideally, using sinc filters in U and D
results in P being an orthogonal projection as required in the
convergence analysis in [7]. However, it is experimentally
found that FIR filter approximations in U and D are sufficient
for the purpose of high frequency extraction in the current
setup.

The refinement procedure is repeated for a predefined
number of iterations and the samples in x(i) after the last
stage form the output HR image.
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Fig. 2: Top row: shearlet filters at a certain orientation for three
scales. Bottom row: corresponding frequency responses.

3. SHEARLET REPRESENTATION

There has been extensive study in constructing and imple-
menting directional transforms aiming at obtaining sparse
representations of piecewise smooth data. The curvelet trans-
form is a directional transform which can be shown to provide
optimally sparse approximations of piecewise smooth im-
ages [12]. However, curvelets offer limited localization in the
spatial domain since they are band-limited. Contourlets are
compactly supported directional elements constructed based
on directional filter banks [13]. Directional selectivity in this
approach is artificially imposed by a special sampling rule
of filter banks which often causes artifacts. Moreover, there
exists no theoretical guarantee for sparse approximations of
piecewise smooth images.

Recently, a novel directional representation system, the
so-called shearlets, has emerged which provides a unified
treatment of continuous as well as discrete models, allowing
optimally sparse representations of piecewise smooth im-
ages [10]. One of the distinctive features of shearlets is that
the directional selectivity is achieved by shearing in place of
rotation; this is, in fact, decisive for a clear link between the
continuous and discrete world which stems from the fact that
the shear matrix can preserve the integer lattice. Furthermore,
shearlets offer a high degree of localization in the spatial
domain since they can be compactly supported.

Shearlets are originally defined in the continuous domain
and they are generated by dilating, shearing and translating a
fixed generating function. One of the fundamental properties
of shearlets is that they provide nearly optimal sparse approx-
imation of functions that belongs to the class of cartoon-like
images, a standard model for images with edges [12]. (see
[10, 11] for more details). Furthermore, shearlets can be faith-
fully discretized, which leads to discrete shearlet filters. Fig. 2
illustrates discrete shearlet filters at a certain orientation and
three different scales, along with their frequency responses.
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Image name NEDI [5] Bicubic Cubic spline 8-tap FIR Contourlet [13] Proposed
bikes 24.86 25.33 25.66 25.86 26.20 26.93
building2 21.64 22.56 22.79 22.99 23.22 23.47
buildings 22.01 22.51 22.69 22.88 23.08 23.39
caps 33.38 33.61 33.77 34.02 34.21 34.81
coinsinfountain 28.31 29.20 29.00 29.66 30.17 30.49
flowersonih35 21.41 22.39 22.52 22.78 23.08 23.30
house 29.37 29.94 30.20 30.33 30.45 30.84
lighthouse2 27.16 27.81 28.05 28.15 28.35 28.59
monarch 29.55 30.32 30.75 30.95 31.25 31.93
ocean 30.15 30.62 30.67 30.89 31.05 31.25
paintedhouse 26.78 27.39 27.62 27.76 27.92 28.40
parrots 32.58 32.89 33.30 33.51 33.51 34.19
plane 29.14 30.17 30.28 30.55 30.63 31.41
rapids 27.10 27.89 28.12 28.32 28.57 28.97
sailing1 26.34 27.17 27.36 27.48 27.63 27.83
Average 27.32 27.99 28.19 28.41 28.62 29.05
Diff. to proposed -1.73 -1.06 -0.86 -0.64 -0.43 –

Table 1: PSNR results in dB for 2x upsampling comparing six interpolation methods. Three linear approaches (bicubic, cubic
spline & 8-tap FIR) and two non-linear approaches (NEDI [5] & contourlet [13]) are compared to the proposed technique.
Average PSNR over 15 test images and the PSNR difference to the proposed approach are summarized.

4. SIMULATION RESULTS

The proposed algorithm is tested for both objective and sub-
jective performance. The subjective quality of the interpo-
lated image is evaluated without downsampling the original
images to avoid artifacts due to downsampling. For an objec-
tive evaluation, a high resolution reference image is required.
To this end, the original is used as the reference HR image and
a 11-tap anti-alias filter, that is used in ITU-T/MPEG evalua-
tions of Scalable Video Coding [15], is employed to generate
a LR image. The coefficients of the 11-tap filter for 2x down-
sampling are [2,−2,−9, 3, 40, 60, 40, 3,−9,−2, 2]/128.

In the first stage of the proposed framework, the input
LR image is upsampled using an 8-tap FIR filter whose co-
efficients are f8 = [−1, 4,−11, 40, 40,−11, 4, ,−1]/64 for the
2x interpolation case. The shearlet modeling is carried out
at 4 different scales, with 8 directional filters for the first
two scales and 16 directional filters for the last two scales.
The stages of sparsity enforcement and high frequency ex-
traction are repeated 8 times. The threshold value for hard-
thresholding the shearlet coefficients is set to 100 and de-
creased by a factor of 0.7 in each iteration.

The performance of the proposed method is compared to
various linear and non-linear methods. In linear methods,
bicubic, cubic spline and f8 filter are considered. Among the
non-linear models, the NEDI [5] technique and a contourlet
based approach [13, 14] are considered. For a direct compar-
ison of contourlet and shearlet dictionaries, the upsampling
and downsampling filters in the proposed framework are kept
fixed and the dictionaries are switched. The thresholds for the
contourlet case are taken from [14].

The objective performance numbers in terms of peak sig-
nal to noise ratio (PSNR) are summarized in Tab. 1 for 15
commonly used test images. As can be seen, the proposed ap-
proach consistently achieves a higher PSNR result. On an av-

erage, a PSNR improvement of 0.64 dB is achieved compared
to the 8-tap linear model for the considered test images. In or-
der to further show the capability of the proposed approach,
it is tested on a large set of 200 images from the Berkeley
Segmentation Dataset [16]. Average PSNR improvements of
1.76 dB, 0.95 dB, 0.69 dB, 0.52 dB, 0.44 dB compared to
NEDI, bicubic, cubic spline, f8 filter and contourlet, respec-
tively, are observed.

Fig. 3 shows some input LR images (a, b, c) and output
HR images produced using NEDI, cubic spline and the pro-
posed technique. NEDI results (d, g, j) have some jaggedness
for regions with strong edges and show some artifacts. The
cubic spline results (e, h, k) do not have any strong artifacts
but show blurring of edges. HR images produced using the
propsosed approach (f, i, l) are sharper and do not exhibit no-
ticeable artifacts.

5. CONCLUSION
A framework for image interpolation that combines low fre-
quencies from a linear method and high frequencies from a
sparse representation is presented. The key idea is identify
dominant structures through a sparse representation in a dic-
tionary composed of shearlet atoms. Considerable objective
and subjective gains are observed with the proposed method.
Some important parameters that can be tuned for reducing the
complexity are the number of iterations for refinement, num-
ber of scales and number of directions for subband filtering.
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(a) LR1 (b) LR2 (c) LR3

(d) NEDI [5] (e) Cubic spline (f) Proposed

(g) NEDI [5] (h) Cubic spline (i) Proposed

(j) NEDI [5] (k) Cubic spline (l) Proposed

Fig. 3: Example 4x upsampling results (via successive application of 2x upsampling). Input patches of size 64 × 64 are
upsampled to 256 × 256. Left column results show jaggedness and other artifacts. Center column results are blurred. Right
column results (proposed approach) appear slightly sharper without evident artifacts.
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