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Abstract— In this paper we present a new local and multiscale 
disparity estimation algorithm. Results show that the proposed 
method can preserve arbitrarily shaped depth discontinuities. 
Some results obtained from this method are shown as depth maps 
and synthetic views produced using the estimated disparity maps. 

I. INTRODUCTION AND RELATED WORK 
The disparity estimation problem has led researchers to 

develop a wide range of techniques, which can be generally 
classified into local and global methods. Local approaches 
make use of color or intensity values within a finite window to 
determine the disparity value for each pixel. Global 
approaches, on the other hand, formulate the stereo matching 
problem as an energy function and solve it using various 
optimization methods such as belief propagation [1], graph cuts 
[2], etc. A comprehensive evaluation of dense stereo matching 
algorithms for rectified image pairs can be found in [3]. 

When the local structures of the image pixels are similar, 
finding their correspondences in other images without global 
perception can be very challenging. To properly deal with these 
ambiguity problems, local methods generally obtain support 
from neighboring pixels. Several of the proposed techniques 
differ in the way they aggregate pixels for support purposes, 
some of them are: multiple window methods [4], adaptive 
shape methods [5] or adaptive weight methods [6] which 
according to the evaluation in [7] outperform approaches that 
explicitly modify the shape of their supports. For more details, 
a classification and evaluation of these different techniques for 
support aggregation can be found in [7]. 

In adaptive weight methods, each pixel located in the support 
region has a weight, which is updated according to its intensity 
difference and spatial distance to the pixel under study. The 
general idea is that pixels with similar intensity and small 
distance to the pixel under study are more likely to have the 
same depth as the pixel being analyzed. Among the large 
number of applications of the bilateral filter [8], some 
researchers have used its weight or an approximation (because 
it is computationally expensive [7]) as adaptive weights for 
disparity [9] or optical flow [10] estimation. This provides in 
some cases, estimations comparable to the ones obtained with 
global techniques. 

In this paper we present a local and multiscale disparity 
estimation algorithm that makes an inexpensive computational 
use of the bilateral filter. Making use of the datasets [11] and 
renderer mentioned in the 3D High Efficiency Video Coding 
(HEVC) test model [12] we compare our estimated depth maps 

with the ones provided in the datasets and we use them to 
render synthetic views, showing rendering improvement near 
arbitrarily shaped depth discontinuities. 

II. PROPOSED ALGORITHM 
An overview of the proposed disparity estimation algorithm is 
shown in Fig. 1, which iterates a multiscale approach 
assumimg rectified stereo views as input. The disparity is 
calculated starting from the coarsest level of an L level 
Gaussian Pyramid and moving to the finer levels. The resulting 
disparities of one level are used as the input to the next finer 
one. Our algorithm pipeline is an adaptation of the one 
described in [10] for optical flow estimation, maintaining its 
multiscale approach and its idea of candidate cost averaging as 
smoothing prior. It is extended by adding new measures for 
consistency check and refinement to be applied in a disparity 
estimation context. 

For each level, the algorithm pipeline operates in two parallel 
paths. One path uses the left view as the reference and the right 
view as the target, while the other path uses them in the 
opposite way. In each of these paths, a cost vector is generated 
and the average cost is minimized. Both paths join again for a 
disparity consistency check and finally a refinement of the 
disparity values is performed. The result is either upsampled 
and used as input into the immediately finer pyramid level or is 
presented as the final disparity map in case of the last iteration. 
In the next sub-sections the different stages that form the 
algorithm are described.  

A. Calculation and evaluation of the disparity candidates 
For each pixel p in the reference image 𝐼! we search for its 
disparity value on the current level 𝑑! contemplating as new 
disparity candidates 𝑑 a range R of values on both sides of the 
current disparity value, which is 0 in the coarsest level of the 
pyramid or the upsampled value of the next coarser level 𝑑!!!!  
of the pyramid otherwise. A matching cost vector 𝐶  is 
obtained with the matching cost of the different candidates. 
This matching cost corresponds to the color difference 
between 𝑝 in 𝐼! and the pixel pointed by 𝑑 in the target view 𝐼! 
 

𝐶 𝑑! =    𝐼! 𝑝 − 𝐼! 𝑝 + 𝑑!
!
. (1) 

 
A first estimation evaluating 𝐶  is obtained, which helps to 
classify the trustworthiness of the candidates: 

𝑊! = 𝑚𝑒𝑎𝑛 𝐶 −min  (𝐶). (2) 
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Figure 1: Diagram with the different steps involved in the presented algorithm. 

For instance, a small 𝑊!  value indicates that all the disparity 
candidates in 𝐶 are very similar, which does not help to decide 
for one of them. 
 

B. Averaging of the cost matching vector 
Depth is assumed to be smooth in a neighborhood 𝑁!"#   in 
order to avoid the addition of terms that link the disparity 
estimation between different pixels, making the optimization 
problem harder to solve. We assume that a correct disparity 
value for a given pixel has to be a good representation of the 
disparity for the pixels in  𝑁!"#  . 
For each disparity candidate 𝑑! of the pixel under analysis 𝑝!, 
we search for the disparity candidates 𝑑! from the other pixels 
𝑝!  within 𝑁!"#    that fulfill 𝑑! 𝑝! =   𝑑!(𝑝!)  and we group 
these disparity candidates with their respective matching cost 
𝐶 𝑑!  information and pixel 𝑝! color and position information 
in the subset Ω. The average matching cost 𝐶′  for every 
candidate 𝑑! 𝑝! , is calculated as: 
 

𝐶′(𝑑! 𝑝! ) =   
!! !!! !!"# !!,!! !(!!(!!))

!! !!! !!"# !!,!!
 (3) 

 
where 𝑊!"#(𝑝!, 𝑝!) is the bilateral filter weight between the 
pixels 𝑝! and 𝑝!, and 𝑋!and 𝑋! are the positions of the pixels 
𝑝!and 𝑝! respectively, so that, 
 

𝑊!"# 𝑝!, 𝑝! =   𝑒−  
1
2  

!!!!!
!!

2

𝑒−  
1
2  

! !! !!(!!)
!!

2

 (4) 
 

C. Minimum cost search  
After the cost averaging, a minimum cost search using a 
Winner-Take-All (WTA) criteria is performed, 𝑑  being the 
final pre-refinement disparity value 𝑑 = 𝑎𝑟𝑔𝑚𝑖𝑛!!(𝐶′(𝑑!)). 

 

D. Disparity Consistency check 
Pre-refinement disparity values 𝑑  for all the pixels are 
calculated and grouped in maps: one map with the left to right 
disparity estimations 𝐷!" and the other one with the right to 

left estimations 𝐷!". For every disparity map, a mask 𝑀 will 
be filled, setting its values to 1 if the disparity of the pixel 
under study is consistent and a 0 if it is not. Three consistency 
checks are now defined: the first one has to be passed in all the 
pyramid levels and the second and third one will be considered 
only in the finest level of the pyramid under specific 
conditions. 
 

1) Left to Right and Right to Left consistency check 
Below, the rule to fill 𝑀 is described for the case of the 
disparity left to right 𝑀!". 

 

𝑀!" 𝑝 =
1 𝐷!" 𝑝 + 𝐷!" 𝑝 + 𝐷!" 𝑝 <   𝜏
0 𝐷!" 𝑝 + 𝐷!" 𝑝 + 𝐷!" 𝑝 >   𝜏

 (5) 

 
The other case 𝑀!"  can be deduced from it. τ  is set 
empirically. 
 
2) Provided range of possible disparity values  
If the range of possible disparity values for our problem is 
known, any disparity value outside the range is marked as 
inconsistent in M.  
 
3) Stereo baseline with parallel image planes 
If the footage is obtained from a stereo baseline with parallel 
image planes configuration, only negative pixel position 
offsets are expected in the 𝐷!" estimation and only positive 
values in the 𝐷!" estimation. Disparity values not fulfilling 
this rule can be marked as inconsistent in their respective M. 

 

E. Refinement and upsampling 
Disparity values are averaged within their neighborhood 𝑁!   
using weights from the bilateral filter and without taking into 
account disparities corresponding to the pixels that did not 
pass the consistency check. 
 

𝑑 𝑝! =   
! !!!"  !  !! !!"# !!,!! !(!!)

! !!!"  !  !! !!"# !!,!!
 (6) 
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The size of 𝑁!   in (6) is empirically fixed but it can grow if 
only inconsistent disparity values are found. The new 
neighborhood size 𝑁′!  can grow until the following 
expression is fulfilled 

!(!!)!!
!

!!
  >   𝛽. (7) 

 
The improvements achieved with the 𝑁!  growing constraint 
can be seen in Fig. 2. 
 

1) L-1 first levels 
The disparity map is upsampled spatially by means of 
sample replication, disparity values are scaled by a factor 
of two. The upsampled disparity map will be used as input 
for the next pyramid level.  

 
2) Last level 

Equation (6) is modified by adding a new weight 𝑊! 
responsible for evaluating the disparity similarity,  
 

𝑊!(𝑝!, 𝑝!) =   𝑒
−  12  

! !! !! !!
!!

2

 . (8) 
 
It minimizes the blending of disparities from neighbor 
pixels with similar colors but with substantially different 
depths. Adding the new weight (8) to (6) we obtain  

 

𝑑! 𝑝! =   
! !!!"  !  !!! !!"# !!,!! !! !!,!! !(!!)

! !!!"  !  !!! !!"# !!,!! !! !!,!!
. (9) 

 
Its impact in the disparity estimation is shown in Fig. 2. 

 

   
Reference detail  Estimation without 𝑊!   Estimation with 𝑊! 

   
Reference detail Estimation without 

growing 𝑁! 
Estimation with 

growing 𝑁! 
Figure 2. Disparity estimation improvements using (7) and (9) First row: 
better edge preservation and minimization of foreground disparity values 
transferred to background elements using 𝑊!  Second row: better disparity 
refinement allowing 𝑁!  growth. 
 

In Fig. 3 selected disparity estimations are presented, omitting 
some processing steps of the algorithm. In the same figure, the 
consistency check mask M and a final result with all processing 
blocks activated are illustrated. 

   
Reference view Disparity estimated 

without cost averaging 
and without refinement 

Disparity estimated 
without refinement 

 

   
M mask Disparity estimated 

without finest pyramid 
level refinement 

Disparity estimated 
with all stages 

activated 
Figure 3. Disparity estimations comparison and consistency check mask. 

 

III. EXPERIMENTAL RESULTS 
Experimental results are presented as depth maps and 

intermediate synthetic views. We compare our generated depth 
maps with the ones provided in [11] which are partially hand-
optimized and the synthetic views obtained with our depth 
against the ones synthesized with the provided depth in [11]. 
The mentioned synthetic views are generated using the 3D-
HEVC renderer described in [12], which requires as input a 
stereo video and the respective depth map for each view 
encoded as gray scale videos. Following the description in 
[12] we convert our dense disparity maps to depth maps. The 
parameters of our algorithm for all the experiments are set to: 
R = 2, 𝑁!"#  = 5x5 pixels, 𝑁!    = 15x15 pixels, σ!  = 4.2 in 
averaging and 30 in refinement, σ! = 20, τ = 0.4, L = 5, 𝛽 = 
0.05 and σ! = 15.8.  
 
In Fig. 4 we show our depth maps highlighting the accuracy of 
the estimations near arbitrarily-shaped depth discontinuities 
and the improvements these estimations produce in the 
synthetic views. Even considering its minor relevance in the 
rendering process, given the local approach of the algorithm, it 
is shown that wrong disparity values can be estimated in 
texture-less regions.  
 
As a consequence of the hierarchical approach of the 
algorithm, small search ranges and small cost averaging 
neighborhoods can be set, making it possible to obtain high 
quality results in a small amount of time. Furthermore given 
the parallel nature of the algorithm, the two disparity maps 
necessary for the 3D-HEVC renderer are generated 
simultaneously. 
 

IV. CONCLUSIONS AND FUTURE WORK 
We have presented a new disparity estimation algorithm 
capable of generating disparity maps with high accuracy in 
depth discontinuities. Mapping the estimated disparity to depth 
maps and using the 3D-HEVC renderer, high quality 
intermediate views can be obtained. Given the local approach 
of the algorithm, it is highly parallelizable and can be 
implemented in GPUs enabling the possibility to obtain 
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Left column: provided depth maps in [11], center column: generated depth maps with our algorithm, right column: depth and synthesis details: top: detail of 
provided depth and its correspondent synthesis result. Bottom: generated depth with our algorithm and its synthesis result. 

Figure 4. Exemplification of our results. 

disparity maps with well-preserved object boundaries for high 
definition or 4K stereo footage in reasonable time. 
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