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Abstract— This paper describes an extension of the high
efficiency video coding (HEVC) standard for coding of multi-
view video and depth data. In addition to the known concept of
disparity-compensated prediction, inter-view motion parameter,
and inter-view residual prediction for coding of the dependent
video views are developed and integrated. Furthermore, for
depth coding, new intra coding modes, a modified motion
compensation and motion vector coding as well as the concept of
motion parameter inheritance are part of the HEVC extension.
A novel encoder control uses view synthesis optimization, which
guarantees that high quality intermediate views can be generated
based on the decoded data. The bitstream format supports
the extraction of partial bitstreams, so that conventional 2D
video, stereo video, and the full multi-view video plus depth
format can be decoded from a single bitstream. Objective and
subjective results are presented, demonstrating that the proposed
approach provides 50% bit rate savings in comparison with
HEVC simulcast and 20% in comparison with a straightforward
multi-view extension of HEVC without the newly developed
coding tools.

Index Terms— 3D video coding (3DVC), multi-view video
plus depth (MVD), high-efficiency video coding (HEVC),
MPEG-H, H.265.

I. INTRODUCTION

3DVIDEO provides a visual experience with depth
perception through the usage of special displays

that re-project a three-dimensional scene from slightly dif-
ferent directions for the left and right eye. Such displays
include stereoscopic displays, which typically show the two
views that were originally recorded by a stereoscopic camera
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system. Here, glasses-based systems are required for multi-
user audiences. Especially for 3D home entertainment, newer
stereoscopic displays can vary the baseline between the views
to adapt to different viewing distances. In addition, multi-view
displays are available, which show not only a stereo pair, but a
multitude of views (typically 20 to more than 50 views) from
slightly different directions. Each user still perceives a viewing
pair for the left and right eye. However, a different stereo pair
is seen when the viewing position is varied by a small amount.
This does not only improve the 3D viewing experience, but
allows the perception of 3D video without glasses, also for
multi-user audiences [2], [25]. As 3D video content is mainly
produced as stereo video content, appropriate technology is
required for generating the additional views from the stereo
data for this type of 3D displays. For this purpose, different
3D video formats or representations have been considered.

First, video-only formats like conventional stereo video
(CSV) and multi-view video (MVV) were proposed.
Backward-compatible compression methods for efficient trans-
mission of these video-only formats were investigated. As
a result, multi-view video coding (MVC) was standardized
as an extension of H.264/MPEG-4 Advanced Video Coding
(AVC) [6], [20], [47], [52], [53]. MVC adds the concept
of disparity-compensated prediction to the H.264/MPEG-4
AVC base standard. Due to the corresponding exploitation of
inter-view dependencies, MVC provides a higher compression
efficiency than a separate coding of each view. However, the
bit rate that is required for a given level of video quality still
increases approximately linearly with the number of coded
views [33]. Thus, an MVC-based transmission of a multitude
of video views suitable for multi-view displays is not feasible.

As a next step, 3D video formats with few views and asso-
ciated depth information were investigated. The depth infor-
mation can be provided through different methods, including
direct recording by special time-of-flight cameras [28], extrac-
tion from computer animated video material from the inher-
ent 3D geometry representation [19], or disparity estimation
[1], [42]. Such depth-enhanced formats are suitable for generic
3D video solutions, where only one format is coded and
transmitted while all necessary views for any 3D display are
generated from the decoded data, e.g., by means of depth
image based rendering (DIBR) [21], [41].

Parallel developments on improving 2D video coding have
led to the high-efficiency video coding (HEVC) standard,
officially approved in April 2013 as ITU-T Recommendation
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H.265 and ISO/IEC 23008-2 (MPEG-H Part 2), jointly devel-
oped by the ITU-T Visual Coding Experts Group (VCEG) and
the ISO/IEC Moving Picture Experts Group (MPEG) [18].
Experimental analysis [40] showed that HEVC is capa-
ble of achieving the same subjective video quality as the
H.264/MPEG-4 AVC High Profile while requiring on average
only about 50% of the bit rate.

Based on HEVC, this paper proposes a new 3D video
coding framework for depth-enhanced multi-view formats. The
technology was submitted as a response to the Call for Pro-
posals (CfP) on 3D Video Technology [15], issued by MPEG
in order to develop a new standard for high efficiency 3D
video delivery. After extensive subjective testing, our proposed
technology was selected as the starting point of the currently
on-going collaborative phase in standardization of the 3D
video and multi-view extensions of HEVC. The proposed
framework is format scalable in the sense that sub-bitstreams
representing a subset of the video views (with or without
associated depth data) can be extracted by discarding NAL
units from the 3D bitstream and be independently decoded.
Furthermore, our proposed methods for depth coding can also
be used in other hybrid coding architectures, where legacy
codecs like H.264/MPEG-4 AVC or MVC are used for the
coding of the video components.

The paper is organized as follows. Section II gives an
overview of the 3D video coding structure and coding tools.
The new methods on advanced prediction methods for coding
dependent video views are discussed in Section III. Section IV
explains the depth coding approaches, including new intra
coding modes, motion vector coding, and motion parameter
inheritance. For the optimal encoder control of the proposed
3D video codec, view synthesis optimization methods and an
encoder-side rendering module are described in Section V.
Section VI discusses the decoder-side view synthesis at the
3D display. Objective and subjective results are presented in
Section VII and conclusions are drawn in Section VIII.

II. OVERVIEW OF 3D VIDEO CODING EXTENSION

The presented 3D video coding (3DVC) extension of HEVC
was developed for depth-enhanced 3D video formats, ranging
from conventional stereo video (CSV) to multi-view video
plus depth (MVD) with two or more views and associated
per-pixel depth data components. The format scalability is
achieved by coding each video view and associated depth map
component using a 2D video coding structure that is based on
the technology of HEVC [18]. The basic structure of our 3D
video encoder is shown in Fig. 1.

In order to provide backward compatibility with 2D video
services, the base or independent view is coded using a
fully HEVC compliant codec. This includes spatial prediction
within a picture, temporal motion-compensated prediction
between pictures at different time instances, transform coding
of the prediction residual, and entropy coding. Individual
coding tools of HEVC and their rate-distortion performance
are discussed in [40] and [49]. For an overview of HEVC, the
reader is referred to [48].

For coding the dependent views and the depth data, modified
HEVC codecs are used, which are extended by including
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Fig. 1. Basic encoder structure with inter-view and inter-component
prediction (gray arrows).

additional coding tools and inter-component prediction tech-
niques that employ data from already coded components at
the same time instance, as indicated by the grey arrows in
Fig. 1. In order to also support the decoding of video-only
data, e.g., pure stereo video suitable for conventional stereo
displays, the inter-component prediction can be configured in
a way that video pictures can be decoded independently of the
depth data. In summary, the HEVC design is extended by the
following tools:

1) Coding of dependent views using disparity-compensated
prediction, inter-view motion prediction and inter-view
residual prediction.

2) Depth map coding using new intra coding modes, mod-
ified motion compensation and motion vector coding,
and motion parameter inheritance.

3) Encoder control for depth-enhanced formats using view
synthesis optimization with block-wise synthesized view
distortion change and encoder-side render model.

4) Decoder-side view synthesis based on DIBR for gener-
ating the required number of display views.

Further details on these tools are provided in the following
sections.

III. CODING OF DEPENDENT VIEWS

One of the most important aspects for efficient multi-view
plus depth coding is the redundancy reduction among different
views at the same time instance, for which the content is
usually rather similar and only varies by a slightly different
viewing position. For coding dependent views, the same con-
cepts and coding tools are used as for the independent view.
However, additional tools have been integrated into the HEVC
design, which employ already coded data in other views
for efficiently representing a dependent view. This includes
disparity-compensated prediction, inter-view motion parameter
prediction as well as inter-view residual prediction. These
additional tools are described in the following subsections.
While disparity-compensated prediction is also supported for
the coding of the depth maps of dependent views, the inter-
view motion parameter and residual prediction is only used
for dependent video views.



3368 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 9, SEPTEMBER 2013

previous
picture

current
picture

reference view current dependent view

),( RRR vux

d

reference block
),( vux

current block

motion vector
of

motion vector
prediction for),( RRR vux ),( vux

Fig. 2. Motion vector correspondences between a block in a current picture
of a dependent view and an already coded reference view, using the disparity
vector d from a depth map estimate.

A. Disparity-Compensated Prediction

As a first coding tool for dependent views, the concept of
disparity-compensated prediction (DCP) has been added as
an alternative to motion-compensated prediction (MCP). Here,
MCP refers to inter-picture prediction that uses already coded
pictures of the same view at different time instances, while
DCP refers to inter-picture prediction that uses already coded
pictures of other views at the same time instance. DCP is
also used in the MVC extension of H.264/MPEG-4 AVC and
similarly, the coding tree block syntax and decoding process
of HEVC remain unchanged when adding DCP to our codec.
Only the high-level syntax has been modified so that already
coded video pictures of the same access unit can be inserted
into the reference picture lists.

B. Inter-View Motion Parameter Prediction

The different views of an MVD sequence are typically
rather similar, as they were captured from the same 3D
scene at slightly different positions. Accordingly, the motion
parameters of the same scene content in different views should
be similar, too. Consequently, methods for depth-based inter-
view prediction of motion parameters such as motion vectors
have been studied [13], [24], [26], [43]. For our proposed
3DVC extension of HEVC, we added a method [45] for
predicting motion parameters in a dependent view from an
already coded and transmitted view at the same time instance.
This concept is illustrated in Fig. 2 for a block in a currently
coded dependent view.

For deriving the candidate motion parameters for a block
x(u, v) in the current dependent view, with (u, v) being the
location of the center of the block, an associated disparity
vector d is used to obtain the corresponding reference sample
location (u R , vR) = (u + d , v). Based on this sample loca-
tion, a reference block xR(u R , vR) representing the prediction
unit that covers (u R , vR) in the reference view is determined.

Note that d has only a horizontal component as 3D video
sequences are typically rectified [12]. The disparity infor-
mation d is calculated from a depth map estimate. This
estimate can be created in two ways, depending on the selected
encoder configuration with respect to the required decoder
functionality:

1) Depth maps are decoded together with the video data
and the depth map estimate is created by warping an
already decoded depth map of another view at the same
time instance into the current view.

2) The depth map estimate is created from previously
transmitted disparity and motion parameters.

Note that method 1) is only applicable, if the application
does not require supporting video only decoding, while
method 2) can be used in all configurations.

If the reference block xR is coded using MCP, the associated
motion parameters (number of motion hypotheses, reference
indices, and motion vectors) can be used as candidate motion
parameters for the current block x in the current view. These
inter-view motion parameter candidates have been added to
the candidate list for the so-called merge mode in HEVC
[14], [48]. In this mode, no motion parameters are coded.
Instead, a candidate list of motion parameters is derived,
which includes the motion parameters of spatially neighboring
blocks as well as motion parameters that are derived based
on the motion data of a temporally co-located block. The
chosen set of motion parameters is signaled by transmitting
an index into the candidate list. For conventional inter modes,
a motion vector that is determined in the same way, but for a
particular reference index, has been added to the list of motion
vector predictor candidates. Finally, the derived disparity vec-
tor can also be directly used as a candidate disparity vector
for DCP.

C. Inter-View Residual Prediction

In addition to similar motion parameters in the different
views, also similar residual signals can be expected. In partic-
ular, a reconstructed residual signal of an already coded view
can be used for further improvement of the coding efficiency
in a currently coded dependent view. For this, we integrated a
block-adaptive inter-view residual prediction. Similarly to the
inter-view motion prediction, the inter-view residual prediction
uses the same depth map estimate for the current picture, as
described in the previous section III-B. Based on the depth
map estimate, a disparity vector is again determined for a
current block x to a reference sample location (u R , vR) for
the top-left sample (u, v) of the current block.

This time, the reconstructed residual signal of the block that
contains the reference sample location as the top-left sample
is used for predicting the residual of the current block. If the
disparity vector points to a sub-sample location, the residual
prediction signal is obtained by interpolating the residual
samples of the reference view using a bi-linear filter. Finally,
only the difference between the current and reference residual
signal is transmitted using transform coding. At the encoder
side, the inter-view residual prediction can be compared to
a conventional HEVC residual transform coding for each
block and selected, if a better rate-distortion performance is
achieved.

IV. DEPTH MAP CODING

For the coding of depth maps, the same concepts of
intra-prediction, motion-compensated prediction, disparity-
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compensated prediction, and transform coding as for the
coding of the video pictures are used. However, in contrast
to natural video, depth maps are characterized by sharp edges
and large regions with nearly constant values [35]. Therefore,
different depth coding methods have been studied in the con-
text of H.264/MPEG-4 AVC-based 3D video coding, including
wavelet coding [8], [30], mesh-based depth coding [22], sub-
sampling of depth data [39] as well as non-rectangular block
partitioning for depth maps, such as wedgelet or platelet
coding [32], [34] and edge chain coding [7].

As a consequence, new intra coding techniques using so-
called depth modeling modes have been developed. In addi-
tion, motion-compensated prediction and motion vector coding
have been modified for the coding of depth maps. Furthermore,
a depth-coding mode has been developed that directly uses the
block partitioning and motion data from the associated video
component. Also, all in-loop filtering techniques of HEVC
are disabled for depth map coding. While for encoding of
the video component the reconstruction quality is directly
measured from its decoded version, the reconstruction quality
of depth map coding has to be measured indirectly as the
quality of synthesized views from decoded video and depth
data. This has been considered for all depth-coding decisions
and modes, described in this section. In particular, a special
encoder process with view synthesis optimization is applied,
as described in Section V.

A. Intra Coding Using Depth Modeling Modes

In contrast to video or texture data, depth maps are mainly
characterized by sharp edges at boundaries between objects
with different scene depth and large areas of nearly constant
or slowly varying sample values within objects. For the nearly
constant areas, the coding tools of HEVC, namely intra
prediction and transform coding, are well-suited. In contrast,
these tools may lead to significant coding artifacts at sharp
edges, causing strongly visible artifacts in synthesized views
along object boundaries. For a better representation of such
edges, we added four new intra prediction modes for depth
coding. In all four modes, a depth block is approximated by
a model that partitions the area of the block into two non-
rectangular regions P1 and P2 as shown in Fig. 3, where each
region is represented by a constant value.

The information required for such a model consists of
two elements, namely the partition information, specifying
the region each sample belongs to, and the region value
information, specifying a constant value for the samples of
the corresponding region. Such a region value is referred to as
constant partition value (CPV) in the following. Two different
partition types are used, namely wedgelets [32] and contours,
which differ in the way the segmentation of the depth block
is derived, as shown in the top and bottom row of Fig. 3,
respectively.

The new depth modeling modes are integrated as an alter-
native to the conventional intra prediction modes specified in
HEVC. For these modes, a residual representing the difference
between the approximation and the original depth signal can be
transmitted via transform coding. The approximation of depth

Fig. 3. Wedgelet partition (top) and contour partition (bottom) of a depth
block: continuous (left) and discrete signal space (middle) with corresponding
partition pattern (right).

blocks using the four new depth modeling modes to obtain
specific partitioning patterns is described in more detail in
subsections 1)–4) of this section.

After obtaining the optimal partitioning pattern of a depth
block, coding of both CPVs of regions P1 and P2 (conf.
Fig. 3) is carried out. In order to reduce the bit rate, CPVs
are not transmitted directly. Instead, they are predicted from
information that is also available at the decoder, namely from
adjacent samples of neighboring left and top blocks [31]. First,
predicted CPVs are calculated as the mean value of these
corresponding sample values. Then, difference or delta CPVs
are calculated between original and predicted CPVs. Finally,
the delta CPVs are linearly quantized at the encoder and de-
quantized before reconstruction at the decoder. This method
is also used in transform coding and the step size of the
quantization is similarly set as a function of the quantization
parameter (QP).

In the encoding process, either one of the described depth
modeling modes, or one of the conventional intra/inter predic-
tion modes is selected. If a depth modeling mode is selected,
the selected mode and the associated prediction data are
signaled in the bitstream in addition to a syntax element that
specifies the usage of a depth modeling mode.

Note that a depth block can also be represented by piecewise
linear functions for each region. For this, depth coding modes
were investigated, but didn’t provide much benefit in coding
efficiency within the overall 3D-HEVC framework. Reasons
are the quadtree-based prediction block partitioning, the intra-
planar prediction mode, where the current block is interpolated
from neighboring spatial blocks, and the efficient residual
coding of HEVC. These tools combine well with modeling the
depth signal around sharp edges by constant functions also for
piecewise smooth signals.

1) Explicit Wedgelet Signaling: In this depth modeling
mode, a best-matching wedgelet partition is sought at the
encoder and the partition information is transmitted in the
bitstream. At the encoder, a search within a defined set of
wedgelet partitions is carried out using the original depth
signal of the current block as a reference. During this search,
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the wedgelet partition that yields the minimum distortion
between the original signal and the wedgelet approximation
is selected as the final partitioning pattern for the depth block.
For this, the patterns of all possible combinations of start and
end point positions are generated and stored in a lookup table
for each block size prior to the coding process. This wedgelet
pattern list contains only unique patterns. The resolution for
the start and end positions (S and E in Fig. 3 top), used for
generating the wedgelet patterns, depends on the block size.
For 16 × 16 and 32 × 32 blocks, the possible start and end
positions are restricted to locations with 2-sample accuracy.
For 8 × 8 blocks, full-sample accuracy is used, and for 4 × 4
blocks, half-sample accuracy is used.

At the decoder the signal of the block is reconstructed
using the transmitted partition information. Thus, the wedgelet
partition information for this mode is not predicted.

2) Intra-Predicted Wedgelet Partition: In this depth mod-
eling mode, the wedgelet partition is predicted from data of
previously coded blocks in the same picture, i.e., by intra-
picture prediction. For a better approximation, the predicted
partition is refined by varying the line end position. Only the
offset to the line end position is transmitted in the bitstream
and at the decoder the signal of the block is reconstructed
using the partition information that results from combining
the predicted partition and the transmitted offset.

The prediction process of this mode derives the start position
and gradient of the line from the information of previously
coded blocks, i.e., from the neighboring blocks left and above
of the current block. In this depth modeling mode, two main
prediction methods have to be distinguished. The first method
covers the case when one of the two neighboring reference
blocks is of type wedgelet, shown in the example in Fig. 4, left.
The second method covers the case when the two neighboring
reference blocks are of type intra direction, which is the default
intra coding type, shown in the example in Fig. 4, right. In
any other case (e.g., the neighboring blocks are not available)
this mode is carried out using meaningful default values.

If the reference block is of type wedgelet, the principle of
this method is to continue the reference wedgelet into the
current block, which is only possible if the continuation of
the separation line of the reference wedgelet actually intersects
the current block. In this case, the start position Sp and end
position E p (as illustrated in Fig. 4, left) are calculated as
the intersection points of the continued line with block border
samples.

If the reference block is of type intra direction, a gradient
mre f is derived from the intra prediction direction first. As the
intra direction is only provided in the form of an abstract index,
a mapping or conversion function is defined that associates
each intra prediction mode with a gradient. Second, the start
position Sp is derived from the adjacent samples of the
left and above neighboring block. Among these samples, the
maximum slope is obtained (as indicated by the largest grey
value difference in the above neighboring block in Fig. 4,
right) and Sp is assigned to the corresponding position in the
current block. This information is also available at the decoder.
Finally, the end position E p is calculated from the start point
and the gradient m p, initially assuming m p = mre f .

Fig. 4. Intra prediction of wedgelet partition (in bottom blocks) for the
scenarios that the above reference block is either of type wedgelet partition
(left) or regular intra direction (right).

The line end position offset for refining the wedgelet parti-
tion is not predicted, but sought within the estimation process
at the encoder. For this, candidate partitions are generated from
the predicted wedgelet partition and an offset value for the
line end position Eof f is obtained, as illustrated in Fig. 4.
By iterating over a range of offset values and comparing
the distortion of the different resulting wedgelet partitions,
the offset value of the best matching wedgelet partition is
determined using a distortion measure for the final partitioning
pattern of the depth block.

3) Inter-Component Predicted Contour Partition: In this
depth modeling mode, a contour partition is predicted from a
texture reference block by inter-component prediction. Similar
to the inter-component prediction of a wedgelet partition
pattern described in the previous subsection, the reconstructed
luminance signal of the co-located block of the associated
video picture is used as a reference. In contrast to wedgelet
partitions, a threshold method is used for the prediction of a
contour partition. In this method, all samples of the recon-
structed luminance block larger than the mean value of the
block are categorized as region P1, while all samples smaller
than the mean value are categorized as region P2, as shown in
Fig. 3 bottom. The same block partitioning is carried out at the
decoder, such that no partitioning or threshold information is
transmitted. Finally, the obtained pattern is used as the depth
block partitioning pattern.

B. Motion Compensation and Motion Vector Coding

In HEVC, eight-tap interpolation filters are used for motion-
compensated interpolation. As experimentally verified, these
filters are suitable for interpolating natural pictures, however
they can produce ringing artifacts at sharp edges in depth
maps, which are visible as disturbing components in synthe-
sized interpolated views. Therefore, the motion-compensated
prediction (MCP) as well as the disparity-compensated predic-
tion (DCP) have been modified for depth map coding, such
that no interpolation is used. Accordingly, the inter-picture pre-
diction is always performed with full-sample accuracy. For the
actual MCP or DCP, a block of samples in the reference picture
is directly used as prediction signal without interpolating
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any intermediate samples. In order to avoid the transmission
of motion and disparity vectors with an unnecessarily high
accuracy, full-sample accurate motion and disparity vectors are
used for coding depth maps. The transmitted motion vector
differences are coded using full-sample instead of quarter-
sample precision.

C. Motion Parameter Inheritance

As the motion characteristics for the video and associated
depth map in the MVD format is similar, inter-component
motion vector prediction has been studied for H.264/MPEG-4
AVC in [37], and [11] for non-rectangular wedgelet parti-
tioning, as well as in [9] for video and depth coding with
H.262/MPEG-2 Video.

Accordingly, a new inter coding mode for depth maps is
added in which the partitioning of a block into sub-blocks and
associated motion parameters are inferred from the co-located
block in the associated video picture. Since the motion vectors
of the video signal are given in quarter-sample accuracy,
whereas for the depth signal sample-accurate motion vectors
are used, the inherited motion vectors are quantized to full-
sample precision. For each block, it can be adaptively decided,
whether the partitioning and motion information is inherited
from the co-located region of the video picture, or new motion
data is transmitted. For signaling the former case, also denoted
as Motion Parameter Inheritance (MPI) mode, we modified the
merge mode of HEVC. We extended the list of possible merge
candidates, such that in depth map coding, the first candidate
refers to merging with the corresponding block from the video
signal. The usage of the merge mode syntax has the advantage
that it allows very efficient signaling of the case where MPI
is used without transmitting a residual signal, since the skip
mode in HEVC also uses the merge candidate list [54].

V. ENCODER CONTROL

One of the main objectives of a video coding standard is to
provide high compression efficiency. However, a video coding
standard only specifies the decoding and parsing process
together with the bitstream syntax and does not give any
guarantee on the rate-distortion performance of compliant
bitstreams. That means, that a corresponding video encoder
can be configured in a flexible way to meet any given
constraints on bit rate, quality, and computational complexity.
Often, when evaluating the coding-efficiency capabilities of a
given bitstream syntax, the encoder control is configured in a
way to provide the best reconstruction quality at a given bit
rate or vice versa, the minimum bit rate at a given quality [46].
This is equivalent to minimizing the Lagrangian cost function
J = D + λ·R [3], which weights the distortion D that is
obtained by coding a block in a particular mode or with a
particular set of parameters with the number of bits R that is
required for transmitting all data of that mode or parameter.
Thus, D is an inverse measure of the reconstruction quality,
while R is directly related to the total bit rate of the coded
data. D and R are connected via the Lagrange multiplier λ that
is usually derived based on the used quantization parameter.
D is typically measured as the sum of squared differences

(SSD) or the sum of absolute differences (SAD) between the
original and the reconstructed sample values for video data.

Since reconstructed depth maps are only used for the synthe-
sis of intermediate views and are not directly viewed, the cod-
ing efficiency can be improved by modifying the Lagrangian
cost function. Coding errors in depth data cause artifacts in
synthesized views and a modified distortion measure for depth
coding is used, as explained in more detail below.

A. View Synthesis Optimization

For coding the depth maps, R is again measured as the total
bit rate of the coded data. The depth distortion, however, has
to be related to the distortion of synthesized views. Therefore,
D needs to be calculated as the SSD between synthesized
views from original and from reconstructed video and depth
data. This is also referred to as synthesized view distortion
(SVD) and has been studied recently in [5], [23], [29], [38].
Since standard-compliant video encoding algorithms operate
block-based, the mapping of depth distortion to the synthesized
view distortion must be block-based as well. Moreover, the
sum of partial distortions (of sub-blocks) must be equal to
the overall distortion of a block to enable an independent
distortion calculation for all partitions of a subdivided block,
as hierarchical block structures are common elements of
modern video coding standards. However, disocclusions and
occlusions prevent a bijective mapping of the distorted depth
map areas to distorted areas in the synthesized view. E.g.,
areas in the synthesized view, which depend on depth data of
an evaluated block, can become visible due to the distortions
of other depth blocks; or vice versa, the distortion of a depth
block has no effect on the synthesized view, since the block is
occluded there. Hence, an exact mapping between the distor-
tion of a block of the depth data and an associated distortion in
the synthesized view is not possible regarding only the depth
data within a currently processed block. Therefore, the SVD
method needs to be extended to calculate the exact synthesized
view distortion change (SVDC) [50] for a particular rendering
algorithm and intermediate viewing position, as shown in the
next subsection.

B. Synthesized View Distortion Change

In the SVDC method, the change of overall distortion of the
synthesized view depending on the change of the depth data
within a depth block is calculated while simultaneously also
considering depth data outside that block. For this, the SVDC
is defined as distortion difference of two synthesized textures.

Fig. 5 illustrates the SVDC calculation. First, for each tested
coding mode for the current depth block, two variants of depth
data are used: Variant d1 consists of reconstructed depth values
for already coded blocks and uncoded depth values for the
remaining blocks, see gray and white blocks in Fig. 5 top,
respectively. Variant d2 is similar, but for the current block,
the reconstructed depth values from the actual mode under test
are used, as shown by the shaded area in Fig. 5 bottom. Both
depth variants d1 and d2 are further used to synthesize portions
of intermediate views v1 and v2 with coded and reconstructed
video data tCod as explained in the next section. For the SSD
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Fig. 5. Synthesized view distortion change (SVDC) calculation with respect
to a currently tested depth coding mode (Ren.: view synthesis with encoder-
side rendering module per block, Init.Ren.: Initial reference view synthesis
per picture).

calculation, also the reference portion vRe f is available. It was
synthesized in the initialization phase from uncoded video and
depth data tOrig and dOrig , as described in the next section.
Next, both distortions can be calculated: D1 = SSD(v1,
vRe f ) for depth variant 1 and D2 = SSD(v2, vRe f ) for depth
variant 2 with the current coding mode under test. Finally,
the difference between these values is used as depth distortion
measure: SVDC = D2 − D1.

C. Encoder-Side Render Model

The computation of SVDC requires rendering functionali-
ties in the encoding process, as depth data is used to shift video
data to the correct position in a synthesized view. However,
since computational complexity is a critical factor in distortion
calculation, a simplified method has been utilized that allows
minimal re-rendering of only those parts of the synthesized
view that are affected by a depth distortion. This encoder-
side render model provides the basic functions of most ren-
dering approaches, including sub-pixel accurate warping, hole
filling and view blending. Thus, all basic processing steps of
common depth-based view synthesis algorithms are considered
by the rate-distortion optimization process at the encoder.
Accordingly, the rate-distortion optimization for depth maps
can be performed independently of the final decoder-side view
synthesis algorithm.

The render model consists of an initialization step for each
picture, as well as a block-wise iteration with re-rendering
and SVDC calculation. During picture-wise initialization, the
reference views vRef (see Fig. 5) are synthesized. The block-
wise re-rendering first warps the video data block from an
original viewing position to the synthesized position using
the associated depth data. Next, an up-sampling by a factor
of 4 of the warped video block is carried out in order to
obtain a more accurate value for the full pixel position in
the synthesized view. Small holes of one pixel are filled
by linear interpolation from the up-sampled video data. As
the warping step is aware of the warping direction, larger

holes or disocclusions are filled by the last warped pixel,
which is automatically a background pixel, while occluded
background areas are overridden by foreground. Thus, no
z-buffer comparisons, e.g., for front-most pixel detection are
required. After warping the individual views, weighted view or
α-blending with the corresponding block of the second view
can be carried out [36]. For this, also the second view is
synthesized in the picture-wise initialization step [51]. The
synthesized portion of the intermediate view is then used to
calculate the SSD, using the corresponding portion of the
reference view from the initialization step. Finally, the SVDC
is obtained as described in the previous section. For view
synthesis optimization of a set of N intermediate views, the
total SVDC is calculated by averaging the individual SVDCs
at each position.

To enable rate-distortion optimization using SVDC, the
render model is integrated into the encoding process for depth
data by replacing the conventional distortion computation with
the SVDC computation in all processing steps related to
the mode decision. Finally, the Lagrangian cost functional
becomes J = SVDC + ls ·λ·R with ls being a constant scaling
factor. In our experiments, ls = 0.5 gave the best results.
The Lagrangian multiplier λ was calculated similar to the
calculation in the HEVC test model encoder.

VI. DEPTH-BASED VIEW SYNTHESIS ALGORITHM

After decoding the 3D video content, a decoder-side synthe-
sis algorithm generates the required number of dense views for
a particular multi-view display. Since the proposed 3D video
codec produces a view- and component-scalable bitstream, two
main synthesis approaches can be applied: View synthesis
from a video-only decoded bitstream and view synthesis
from a full MVD decoded bitstream. The first approach only
operates on the decoded video data and is described in detail
in [27]. The second approach is based on classical DIBR
functionality [36]. This depth-based view synthesis operates
picture-wise and extends the functionality of the encoder-side
rendering module, described in Section V-C. The similarities
and differences of both modules are summarized in TABLE I
for the individual rendering steps in processing order.

TABLE I shows, that the major parts, namely warping,
hole-filling and view-blending are rather similar. The main
operation of the decoder-side depth-based synthesis is similar
to the encoder-side render module, as already described in
Section V-C. In addition, the decoder-side depth-based syn-
thesis operates picture-wise with an initial up-sampling of the
luminance and chrominance component for higher precision
before warping. Furthermore, a more complex algorithm for
filling disoccluded areas is used, where a reliability map is
created after warping and small hole filling. This reliability
map assigns an 8 bit value from 0 to 255 for each pixel
of a warped view. Here, disoccluded areas are rated with 0,
i.e., unreliable. In the six-sample wide boundary area next
to a disocclusion, the reliability linearly increases from
0 to 255. All remaining areas are set to 255. The reliability
information is used in the view blending process in addition to
the intermediate view position to obtain the blending weights.
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TABLE I

METHOD COMPARISON BETWEEN DECODER-SIDE DEPTH-BASED VIEW

SYNTHESIS ALGORITHM AND ENCODER-SIDE RENDER MODEL

Processing
Step

Decoder-Side Depth-Based
View Synthesis

Encoder-Side Render
Model

Operation
Mode

Picture-wise Block-wise

Up-Sampling 4x for luminance, Not applied

8x for chrominance

Warping
Line-wise directional for

faster occlusion/ disocclusion
handling

Line-wise directional
for faster occlusion/

disocclusion handling

Interpolation
and Hole

Filling

Small holes by interpolation,
disocclusions from last

warped pixel as background

Small holes by
interpolation,

disocclusions remain

Reliability
Map Creation

Reliability map for
dissoclusions and object

boundaries, see [36]
Not applied

Similarity
Enhancement

Accumulated histogram
equalization between views

Not applied

View Blending

α-blending with weights,
based on distances to original

viewing positions and
reliability map values for

dissocclusion handling

a-blending with
weights, based on

distances to original
viewing positions

Chrominance
Decimation

Down-filtering of
chrominance channels, if

necessary for display format
(e.g. for 4:2:0)

Not applied

Accordingly, disoccluded areas with a reliability value of 0 are
filled from the other view, while other areas are interpolated
from either warped view, according to their blending weights.
After blending, the decoder-side depth-based synthesis also
needs to adapt to the required display format, e.g., by down-
sampling the chrominance channels.

VII. SIMULATION RESULTS

The CfP for 3D video technology [15] specified
two test categories: AVC-compatible and HEVC-
compatible/unconstrained. The 3D video codec, described in
this paper, was proposed for the HEVC-compatible category,
i.e., the base view must be decodable by an HEVC decoder.
The 3D video test set consisted of 8 sequences with the video
component in 4:2:0 chroma format: 4 with a progressive
HD resolution of 1920 × 1088 luma/depth samples with
25 fps and 4 with a progressive resolution of 1024 × 768
luma/depth samples with 30 fps (test sequences 1–4 and 5–8 in
TABLE II, respectively). All 8 sequences were evaluated in
two test scenarios: In the 2-view scenario, video and depth
component of 2 views {V0,V1} were coded and a stereo
pair with one original and one intermediate synthesized
viewing position reconstructed and rendered. This stereo
pair was evaluated on a stereoscopic display. In the 3-view
scenario, video and depth component of 3 views {V0,V1,V2}
were coded and three types of video data extracted. First,
a central stereo pair in the middle of the 3-view range and
second a random stereo pair within the viewing range were
synthesized and viewed on a stereoscopic display. Third,
a dense range of 28 views was synthesized and evaluated

TABLE II

RATE POINTS FOR 2-VIEW AND 3-VIEW TEST SCENARIO FOR

HEVC-BASED 3D VIDEO TECHNOLOGY

Test Sequence
2-View Test Scenario

Bit Rates (kbps)
3-View Test Scenario

Bit Rates (kbps)
R1 R2 R3 R4 R1 R2 R3 R4

Poznan_Hall2 140 210 320 520 210 310 480 770
Poznan_Street 280 480 800 1310 410 710 1180 1950
Undo_Dancer 290 430 710 1000 430 780 1200 2010

GT_Fly 230 400 730 1100 340 600 1080 1600
Kendo 230 360 480 690 280 430 670 1040

Balloons 250 350 520 800 300 480 770 1200
Lovebird1 220 300 480 830 260 420 730 1270
Newspaper 230 360 480 720 340 450 680 900

on an autostereoscopic 28-view display [15]. All results
were evaluated in large-scale subjective tests [17], including
the entire set of new coding tools, described in this paper.
For individual coding results on single tools or a subset of
tools, the reader is referred to [45] for inter-view motion
parameter prediction, [54] for motion parameter inheritance,
[31] for depth intra coding and [50], [51] for view synthesis
optimization.

For the coding of the 2-view and 3-view scenario, 4 different
rate points were defined prior to the call as shown in TABLE II
and anchors provided at these bit rates, where each video
and depth component was separately coded with the HEVC
test model HM, version 3.0. For the 3D video test sets,
a random access of ≤0.5 sec was required. Accordingly,
we used temporal prediction structures with hierarchical B
pictures [44] with groups of pictures (GOPs) of 12 and 15
for test sequences with 25 and 30 fps, respectively and for all
coded video and depth components.

Temporal QP cascading was used similar to the HEVC test
conditions [16], where pictures in random access units are
coded with a given QP, while for each temporal hierarchy
level, the QP is increased by 1. The independent or base view
was V1 for both scenarios. Inter-view cascading is restricted
to the given QP for the independent view and QP + 3 for all
dependent views. The QP offset �QPD for the depth QPD in
relation to the Video QP (QPD = Q P + �QPD) was fixed
based on subjective assessments and varies from �QPD = 0
for video QP = 51 at lowest quality up to �QPD = 9 for
video QP ≤ 32 at high quality. With these settings, the same
encoder configuration is used for all sequences and rate points.

A. Objective Performance

The proposed 3D video codec has been evaluated by
objective comparisons with the anchor coding, as well as
two improved methods. For this, intermediate views have
been generated for each method at every 1/16-th position
between the coded views, such that 15 and 30 intermediate
views have been generated for the 2-view and 3-view scenario
respectively. Then, the PSNR values have been determined,
comparing the decoded synthesized views with synthesized
views from original uncoded video and depth data. From the
PSNR values and the overall bit rate of all methods, the bit rate
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Fig. 6. Average bit rate savings of the proposed 3DVC extension of HEVC
relative to the HEVC simulcast anchors with GOP8, HEVC simulcast with
GOP 12/15 and a straightforward multi-view extension of HEVC with inter-
view prediction, for the 2-view and 3-view test scenario.

savings of our proposed method in comparison to the different
references has been calculated, using the Bjøntegaard delta
rates [4]. These average bit rate savings over all test sequences
are shown in Fig. 6 for the 2-view and 3-view scenario.

First, a comparison of our 3DVC extension of HEVC
against the anchor coding with HEVC simulcast for each
video and depth component and GOP8 is shown. This case
was also evaluated within the large-scale subjective tests as
shown in [17]. Here, bit rate savings of more than 60% for
the 3-view case and more than 50% for the 2-view case
were achieved. For the 3-view scenario, two dependent views
(V0 and V2) benefit from the additional inter-view prediction
tools, such that the gains are higher than for the 2-view sce-
nario. For both scenarios, the highest average bit rate savings
were achieved for the virtual camera position 1.0, i.e., at the
position of the independent base view. For this view, most of
the bit rate has been spent, as is analyzed in Section VII-C.
Beside the disparity-compensated prediction and the additional
coding tools in our proposed 3DVC extension of HEVC, the
obtained bit rate savings can also partly be attributed to the
usage of a larger GOP sizes in comparison to the anchors.

Therefore, we second compared the coding efficiency also
to an HEVC simulcast version (labeled as “HEVC SC” in
Fig. 6) that uses the same GOP structure as the developed
HEVC extension for a fair comparison of the developed codec
with HEVC simulcast. The corresponding gains result only
from the usage of disparity-compensated prediction and new
coding tools in our proposal. Again, the gains for the 3-view
scenario are significantly higher than for the 2-view scenario
due inter-view prediction for two dependent views.

Third, bit rate savings are shown for our codec in compar-
ison to a straightforward HEVC extension to multiple views
(MV-HEVC), which only includes disparity-compensated pre-
diction as additional coding tool. These average gains of 23%
for the 3-view scenario and 20% for the 2-view scenario thus
show the improvements that were achieved by the new coding
tools, described in the previous chapters.

Next, bit rate savings of the HEVC 3DVC extension vs.
HEVC SC and MV-HEVC for the 2- and 3-view scenario have

TABLE III

AVERAGE BIT RATE SAVINGS COMPARED TO STRAIGHTFORWARD HEVC

MULTI-VIEW EXTENSION (MV-HEVC) AND HEVC SIMULCAST

(HEVC SC)

Test Sequence
2-View Test Scenario
Bit Rate Savings (%)

3-View Test Scenario
Bit Rate Savings (%)

MV-HEVC HEVC SC MV-HEVC HEVC SC

Poznan_Hall2 20.10 35.10 22.04 44.96

Poznan_Street 11.97 37.60 14.41 51.07

Undo_Dancer 6.56 36.74 12.50 53.19

GT_Fly 16.17 44.23 20.42 57.61

Kendo 37.15 42.74 40.31 53.27

Balloons 27.81 37.85 31.17 49.53

Lovebird1 16.22 34.93 18.09 47.10

Newspaper 20.28 35.20 23.02 43.16

Average 19.53 38.05 22.75 49.99
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Fig. 7. Averaged MOS scores over all eight test sequences at four different
bit rates R1-R4 according to Table II: Evaluation of 2-view scenario on
stereoscopic display (SD), evaluation of 3-view scenario on auto-stereoscopic
28-view display (ASD).

been averaged in TABLE III over all virtual camera positions.
In addition, the obtained savings are also given for each test
sequence.

Besides the improved compression efficiency of the pro-
posed 3DVC extension of HEVC, also the complexity has been
measured as the average runtime in comparison to the HEVC
anchor configuration. For the 2-view scenario, the proposed
codec showed a relative runtime of 172% for the encoder,
121% for the decoder and 51% for the decoder-side view
synthesis (in comparison to the view synthesizer software
provided by MPEG). For the 3-view scenario, the relative
runtimes are 283% for the encoder, 128% for the decoder and
48% for the view synthesis.

B. Subjective Performance

All proposals, submitted to the CfP, were evaluated in large-
scale subjective tests [17]. From this, the viewing results in
terms of average MOS values over all sequences are shown in
Fig. 7 for our proposed 3DVC extension of HEVC.

Here, the viewing results of the 2-view scenario on a
stereoscopic display with polarized glasses (SD) as well as
results of the 3-view scenario on an auto-stereoscopic 28-view
display (ASD) are given for each rate point. Fig. 7 shows
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the average MOS values of the anchor coding with HEVC
simulcast and our proposal with two settings: Video and
depth coding, as well as video-only coding with corresponding
decoder-side rendering, using image domain warping [10]. The
proposed codec in both settings significantly outperforms the
anchor coding, such that, e.g., a similar subjective quality of
5 for the anchor coding at R3 is already achieved by our
proposal at R1. Comparing the associated individual bit rates
of each sequence at R3 and R1, as given in TABLE II, average
bit rate savings of 57% and 61% for the 2- and 3-view case
respectively are achieved. This is also similar to the bit rate
savings based on objective PSNR measure, as reported in the
previous section.

Comparing the two settings of the proposed 3DV codec in
Fig. 7, the video-only setting was rated slightly better at the
lower rate points R1 and R2. Contrary, the video and depth
setting was rated slightly better at the high rate point R4.

Comparing the 2- and 3-view scenario in Fig. 7, the
subjective MOS results are very consistent for each rate
point. Since very different 3D displays were used for the
viewing, the proposed codec is thus able to provide a display-
independent reconstruction quality from a decoded generic 3D
video format.

C. Bit Rate Distribution

For our 3DVC extension of HEVC, the average bit rate
distribution in percent of the total rate between the video and
depth components over all test sets is shown in Fig. 8 for the
2- and 3-view scenario at all rate points.

Fig. 8 first shows, that most of the bit rate is distributed
to the video component of the independent base view V1
with more than 50% for the 2-view as well as for the 3-view
scenario. That means, efficient 3D video transmission of MVD
data can be achieved at less than double the bit rate of a 2D
video transmission based on HEVC.

Fig. 8 also shows that most of the bit rate is allocated to
the video data. For the 2-view scenario, the video/depth rate

distribution varies from 86%
/
14% at the lowest rate point

R1 to 93%
/
7% at the highest rate point R4 on average. For

the 3-view scenario the video/depth rate distribution ranges
from 83%

/
17% at R1 to 92%

/
8% at R4. Thus, depth data

can be coded very efficiently. Therefore, if multi-view video
with depth data is transmitted at the same overall bit rate as
video-only data, the video bit rate portion in MVD only needs
to be around 8% for a good-quality as provided by rate point
R4 in the simulations. The perceived video quality in both
scenarios is almost identical. In addition, the MVD transmis-
sion provides depth data that are available at the decoder for
high quality view synthesis in a 3D display. Overall, the MVD
approach was even slightly better subjectively rated at the high
rate point R4, as shown in Fig. 7.

VIII. CONCLUSION

We presented a 3D video codec as an extension of the
HEVC standard for coding of multi-view video plus depth
formats for stereoscopic and autostereoscopic multi-view dis-
plays. Besides disparity-compensated prediction, a number
of new tools were developed, including inter-view motion
parameter and inter-view residual prediction for the video
component of dependent views. Furthermore, novel intra cod-
ing modes, modified motion compensation and motion vector
coding, motion parameter inheritance as well as a new encoder
control for the depth data were presented. The encoder control
uses view synthesis optimization, which guarantees that high
quality intermediate views can be generated at the decoder. At
the decoder, a subset of the coded components can be extracted
separately, such that 2D video, stereo video or full MVD can
be reconstructed from the 3D video bitstream. In addition, our
depth coding methods can also be used together with other
hybrid video coding architectures such as, e.g., H.264/AVC or
MVC.

The described technology was submitted to the MPEG Call
for Proposals on 3D Video Coding Technology. As an outcome
of the corresponding subjective tests, our proposed 3D video
coding extension of HEVC performed best among all sub-
missions. Furthermore, objective results were shown, where
the proposed codec provides about 50% bit rate savings in
comparison to HEVC simulcast and about 20% in comparison
to a straightforward multi-view extension of HEVC (MV-
HEVC) without the developed coding tools. Consequently,
our technology was selected as the starting point for the
standardization of the 3D video and multi-view extensions of
HEVC. All described coding and synthesis tools were included
in the first version of the reference software 3D-HTM for the
standardization process.

APPENDIX A

DOWNLOADABLE RESOURCES RELATED TO THIS PAPER

All JCT-3V documents are publically available and can be
accessed through the JCT-3V document management system
at http://phenix.it-sudparis.eu/jct3v/.
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