
Chapter 5
Inter-Picture Prediction in HEVC

Benjamin Bross, Philipp Helle, Haricharan Lakshman, and Kemal Ugur

Abstract Inter-picture prediction in HEVC can be seen as a steady improvement
and generalization of all parts known from previous video coding standards, e.g.
H.264/AVC. The motion vector prediction was enhanced with advanced motion
vector prediction based on motion vector competition. An inter-prediction block
merging technique significantly simplified the block-wise motion data signaling
by inferring all motion data from already decoded blocks. When it comes to
interpolation of fractional reference picture samples, high precision interpolation
filter kernels with extended support, i.e. 7/8-tap filter kernels for luma and 4-tap filter
kernels for chroma, improve the filtering especially in the high frequency range.
Finally, the weighted prediction signaling was simplified by either applying explic-
itly signaled weights for each motion compensated prediction or just averaging two
motion compensated predictions. This chapter provides a detailed description of
these aspects of HEVC standard and explains their coding efficiency and complexity
characteristics.

5.1 Introduction

In HEVC, the same basic hybrid video coding approach as in previous standards
is applied. Hybrid video coding is known to be a combination of video sample
prediction and transformation of the prediction error, i.e. the residual, followed
by entropy coding of the prediction information and the transform coefficients.
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Fig. 5.1 Inter-picture prediction concept and parameters using a translational motion model

While intra-picture prediction exploits the correlation between spatially neighboring
samples, inter-picture prediction makes use of the temporal correlation between
pictures in order to derive a motion-compensated prediction (MCP) for a block of
image samples.

For this block-based MCP, a video picture is divided into rectangular blocks.
Assuming homogeneous motion inside one block and that moving objects are larger
than one block, for each block, a corresponding block in a previously decoded
picture can be found that serves as a predictor. The general concept of MCP based on
a translational motion model is illustrated in Fig. 5.1. Using a translational motion
model, the position of the block in a previously decoded picture is indicated by
a motion vector .�x; �y) where �x specifies the horizontal and �y the vertical
displacement relative to the position of the current block. The motion vectors
.�x; �y) could be of fractional sample accuracy to more accurately capture the
movement of the underlying object. Interpolation is applied on the reference pictures
to derive the prediction signal when the corresponding motion vector has fractional
sample accuracy. The previously decoded picture is referred to as the reference
picture and indicated by a reference index �t to a reference picture list. These
translational motion model parameters, i.e. motion vectors and reference indices, are
further referred to as motion data. Two kinds of inter-picture prediction are allowed
in modern video coding standards, namely uni-prediction and bi-prediction.

In case of bi-prediction, two sets of motion data (�x0; �y0; �t0 and
�x1; �y1; �t1) are used to generate two MCPs (possibly from different pictures),
which are then combined to get the final MCP. Per default, this is done by averaging
but in case of weighted prediction, different weights can be applied to each MCP,
e.g. to compensate for scene fade outs. The reference pictures that can be used in
bi-prediction are stored in two separate lists, namely list 0 and list 1. In order to
limit the memory bandwidth in slices allowing bi-prediction, the HEVC standard
restricts PUs with 4 � 8 and 8 � 4 luma prediction blocks to use uni-prediction only.
Motion data is derived at the encoder using a motion estimation process. Motion
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Fig. 5.2 Inter-picture prediction in HEVC (grey parts represent the bi-prediction path)

estimation is not specified within video standards so different encoders can utilize
different complexity-quality tradeoffs in their implementations.

An overview block diagram of the HEVC inter-picture prediction is shown in
Fig. 5.2. The motion data of a block is correlated with the neighboring blocks.
To exploit this correlation, motion data is not directly coded in the bitstream but
predictively coded based on neighboring motion data. In HEVC, two concepts are
used for that. The predictive coding of the motion vectors was improved in HEVC
by introducing a new tool called advanced motion vector prediction (AMVP) where
the best predictor for each motion block is signaled to the decoder. In addition, a new
technique called inter-prediction block merging derives all motion data of a block
from the neighboring blocks replacing the direct and skip modes in H.264/AVC [26].
Section 5.2 describes all aspects of motion data coding in HEVC including AMVP,
inter-prediction block merging and motion data storage reduction. The improved
fractional sample interpolation filter is explained in Sect. 5.3. Additional weighting
of the MCP or, in case of bi-prediction, the weighting of the two MCPs is further
detailed in Sect. 5.4. Finally, Sect. 5.5 summarizes and concludes this chapter.

5.2 Motion Data Coding

5.2.1 Advanced Motion Vector Prediction

As in previous video coding standards, the HEVC motion vectors are coded in terms
of horizontal (x) and vertical (y) components as a difference to a so called motion
vector predictor (MVP). The calculation of both motion vector difference (MVD)
components is shown in Eqs. (5.1) and (5.2).

MVDx D �x � MVPx (5.1)

MVDy D �y � MVPy (5.2)



116 B. Bross et al.

CTU0 CTU1 MB0 MB1

Fig. 5.3 Maximum number of left neighbors with motion data in HEVC with CTU0 having 16
8�4 luma PBs next to CTU1 with one 64�64 luma PB (left) and in H.264/AVC with MB0 having
four 4�4 partitions next to MB1 with one 16� 16 partition (right)

Motion vectors of the current block are usually correlated with the motion vectors
of neighboring blocks in the current picture or in the earlier coded pictures. This is
because neighboring blocks are likely to correspond to the same moving object with
similar motion and the motion of the object is not likely to change abruptly over
time. Consequently, using the motion vectors in neighboring blocks as predictors
reduces the size of the signaled motion vector difference. The MVPs are usually
derived from already decoded motion vectors from spatial neighboring blocks or
from temporally neighboring blocks in the co-located picture.1 In H.264/AVC, this
is done by doing a component wise median of three spatially neighboring motion
vectors. Using this approach, no signaling of the predictor is required. Temporal
MVPs from a co-located picture are only considered in the so called temporal direct
mode of H.264/AVC. The H.264/AVC direct modes are also used to derive other
motion data than the motion vectors. Hence, they relate more to the block merging
concept in HEVC and are further discussed in Sect. 5.2.2.

In HEVC, the approach of implicitly deriving the MVP was replaced by a
technique known as motion vector competition, which explicitly signals which
MVP from a list of MVPs, is used for motion vector derivation [19]. The variable
coding quadtree block structure in HEVC can result in one block having several
neighboring blocks with motion vectors as potential MVP candidates. Taking the
left neighbor as an example, in the worst case a 64�64 luma prediction block
could have 16 8�4 luma prediction blocks to the left when a 64�64 luma coding
tree block is not further split and the left one is split to the maximum depth.
Figure 5.3 illustrates this example and compares it to the worst case in H.264/AVC.
Advanced Motion Vector Prediction (AMVP) was introduced to modify motion
vector competition to account for such a flexible block structure [11]. During

1In some cases, the zero motion vector can also be used as MVP.



5 Inter-Picture Prediction in HEVC 117

the development of HEVC, the initial AMVP design was significantly simplified
to provide a good trade-off between coding efficiency and an implementation
friendly design. Section 5.2.1.1 describes in detail how the list of potential MVPs
is constructed in HEVC. Section 5.2.1.2 describes the signaling of all motion data,
including the index to the AMVP list, when AMVP is used for MV coding.

5.2.1.1 AMVP Candidate List Construction

The initial design of AMVP included five MVPs from three different classes
of predictors: three motion vectors from spatial neighbors, the median of the
three spatial predictors and a scaled motion vector from a co-located, temporally
neighboring block. Furthermore, the list of predictors was modified by reordering
to place the most probable motion predictor in the first position and by removing
redundant candidates to assure minimal signaling overhead. Exhaustive experiments
throughout the standardization process investigated how the complexity of this
motion vector prediction and signaling scheme could be reduced without sacrificing
too much coding efficiency [7, 8, 14]. This led to significant simplifications of the
AMVP design such as removing the median predictor, reducing the number of
candidates in the list from five to two, fixing the candidate order in the list and
reducing the number of redundancy checks. The final design of the AMVP candidate
list construction includes the following two MVP candidates:

• up to two spatial candidate MVPs that are derived from five spatial neighboring
blocks

• one temporal candidate MVPs derived from two temporal, co-located blocks
when both spatial candidate MVPs are not available or they are identical

• zero motion vectors when the spatial, the temporal or both candidates are not
available

Spatial Candidates

As already mentioned, two spatial MVP candidates A and B are derived from five
spatially neighboring blocks which are shown in Fig. 5.4b. The locations of the
spatial candidate blocks are the same for both AMVP and inter-prediction block
merging that will be presented in Sect. 5.2.2.

The derivation process flow for the two spatial candidates A and B is depicted
in Fig. 5.5. For candidate A, motion data from the two blocks A0 and A1 at the
bottom left corner is taken into account in a two pass approach. In the first pass,
it is checked whether any of the candidate blocks contain a reference index that is
equal to the reference index of the current block. The first motion vector found will
be taken as candidate A. When all reference indices from A0 and A1 are pointing
to a different reference picture than the reference index of the current block, the
associated motion vector cannot be used as is. Therefore, in a second pass, the
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Fig. 5.5 Derivation of spatial AMVP candidates A and B from motion data of neighboring blocks
A0, A1, B0, B1 and B2

motion vectors need to be scaled according to the temporal distances between
the candidate reference picture and the current reference picture. Equation (5.3)
shows how the candidate motion vector mvcand is scaled according to a scale factor.
ScaleFactor is calculated in Eq. (5.4) based on the temporal distance between the
current picture and the reference picture of the candidate block td and the temporal
distance between the current picture and the reference picture of the current block
tb. The temporal distance is expressed in terms of difference between the picture
order count (POC) values which define the display order of the pictures. The scaling
operation is basically the same scheme that is used for the temporal direct mode
in H.264/AVC. This factoring allows pre-computation of ScaleFactor at slice-level
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since it only depends on the reference picture list structure signaled in the slice
header. Note that the MV scaling is only performed when the current reference
picture and the candidate reference picture are both short term reference pictures.

mv D sign.mvcand � ScaleFactor/ � ..jmvcand � ScaleFactorj C 27/ � 8/ (5.3)

ScaleFactor D clip.�212; 212 � 1; .tb � tx C 25/ � 6/ (5.4)

tx D 214 C j td
2

j
td

(5.5)

For candidate B, the candidates B0 to B2 are checked sequentially in the same
way as A0 and A1 are checked in the first pass. The second pass, however, is only
performed when blocks A0 and A1 do not contain any motion information, i.e. are
not available or coded using intra-picture prediction. Then, candidate A is set equal
to the non-scaled candidate B, if found, and candidate B is set equal to a second,
non-scaled or scaled variant of candidate B. Since you could also end up in the
second pass when there still might be potential non-scaled candidates, the second
pass searches for non-scaled as well as for scaled MVs derived from candidates B0
to B2.

Overall, this design allows to process A0 and A1 independently from B0, B1,
and B2. The derivation of B should only be aware of the availability of both A0 and
A1 in order to search for a scaled or an additional non-scaled MV derived from B0
to B2. This dependency is acceptable given that it significantly reduces the complex
motion vector scaling operations for candidate B. Reducing the number of motion
vector scalings represents a significant complexity reduction in the motion vector
predictor derivation process.

Temporal Candidate

It can be seen from Fig. 5.4b that only motion vectors from spatial neighboring
blocks to the left and above the current block are considered as spatial MVP
candidates. This can be explained by the fact that the blocks to the right and below
the current block are not yet decoded and hence, their motion data is not available.
Since the co-located picture is a reference picture which is already decoded, it is
possible to also consider motion data from the block at the same position, from
blocks to the right of the co-located block or from the blocks below. In HEVC,
the block to the bottom right and at the center of the current block have been
determined to be the most suitable to provide a good temporal motion vector
predictor (TMVP). These candidates are illustrated in Fig. 5.4a where C0 represents
the bottom right neighbor and C1 represents the center block. Here again, motion
data of C0 is considered first and, if not available, motion data from the co-located
candidate block at the center is used to derive the temporal MVP candidate C. The
motion data of C0 is also considered as not being available when the associated
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PU belongs to a CTU beyond the current CTU row. This minimizes the memory
bandwidth requirements to store the co-located motion data. In contrast to the
spatial MVP candidates, where the motion vectors may refer to the same reference
picture, motion vector scaling is mandatory for the TMVP. Hence, the same scaling
operation from Eq. (5.3) as for the spatial MVPs is used whereas td is defined as
the POC difference between the co-located picture and the reference picture of the
co-located candidate block.

While the temporal direct mode in H.264/AVC always refers to the first reference
picture in the second reference picture list, list 1, and is only allowed in bi-predictive
slices, HEVC offers the possibility to indicate for each picture which reference
picture is considered as the co-located picture. This is done by signaling in the slice
header the co-located reference picture list and reference picture index as well as
requiring that these syntax elements in all slices in a picture should specify the
same reference picture.

Since the temporal MVP candidate introduces additional dependencies, it might
be desirable to disable its usage for error robustness reasons. In H.264/AVC there
is the possibility to disable the temporal direct mode for bi-predictive slices in
the slice header (direct_spatial_mv_pred_flag). HEVC syntax extends
this signaling by allowing to disable the TMVP at sequence level or at picture
level (sps/slice_temporal_mvp_enabled_flag). Although the flag is
signaled in the slice header, it is a requirement of bitstream conformance that its
value shall be the same for all slices in one picture. Since the signaling of the picture-
level flag depends on the SPS flag, signaling it in the PPS would introduce a parsing
dependency between SPS and PPS. Another advantage of this slice header signaling
is that if you want to change only the value of this flag and no other parameter in
the PPS, there is no need to transmit a second PPS.

5.2.1.2 AMVP Motion Data Signaling

In general, motion data signaling in HEVC is similar as in H.264/AVC. An inter-
picture prediction syntax element, inter_pred_idc, signals whether reference
list 0, 1 or both are used. For each MCP obtained from one reference picture list, the
corresponding reference picture (�t) is signaled by an index to the reference picture
list, ref_idx_l0/1, and the MV (�x; �y) is represented by an index to the MVP,
mvp_l0/1_flag, and its MVD. The MVD syntax is further detailed in Chap. 8. A
newly introduced flag in the slice header,mvd_l1_zero_flag, indicates whether
the MVD for the second reference picture list is equal to zero and therefore not
signaled in the bitstream. When the motion vector is fully reconstructed, a final
clipping operation assures that the values of each component of the final motion
vector will always be in the range of �215 to 215 � 1, inclusive.
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Fig. 5.6 Detail of a video sequence exemplifying the merge concept. (a) In the foreground, the
scene contains a moving object (a pendulum) with motion indicated by the arrow. (b) A rate-
distortion optimized quadtree partitioning for inter-picture prediction parameters is indicated by
the white borders. (c) Only effective block borders are shown, i.e. borders that separate blocks
with different motion parameters. Reproduced with permission from [12], © 2012 IEEE

5.2.2 Inter-picture Prediction Block Merging

In image or video compression it is very reasonable to deploy a block based
image partitioning mechanism in order to apply different prediction models to
different regions of an image. This is because a single model can in general not
be expected to capture the versatile characteristics of a whole image or video.
HEVC uses a quadtree structure to describe the partitioning of a region into sub-
blocks. In terms of bit rate, this is a very low-cost structure while at the same
time, it allows for partitioning into a wide range of differently sized sub-blocks.
While this simplicity is an advantage for example for encoder design, it also bears
the disadvantage of over-segmenting the image, potentially leading to redundant
signaling and ineffective borders. This drawback is effectively addressed by block
merging as explained in Sect. 5.2.2.1. A description of the exact algorithm and
bitstream syntax follows in Sects. 5.2.2.2–5.2.2.5.

5.2.2.1 Background

An example partitioning using the quadtree structure is shown in Fig. 5.6a for a
uni-predictive slice in an HEVC-encoded video. As can be seen, the area around
the pendulum is heavily partitioned in order to capture the motion in front of the
still background. Figure 5.6c shows the same partitioning, but without ineffective
borders, i.e. borders dividing regions of equal motion parameters. It becomes
evident that in this particular situation, the quadtree structure is unable to accurately
capture the motion without introducing ineffective borders. It is easy to see that
this over-segmentation easily occurs whenever moving objects in a scene cause
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abrupt changes in the field of motion parameters, which is common in natural video
content. One reason is that the quad-tree structure systematically does not allow for
joint description of child blocks that belong to different parent blocks. Also, the fact
that a block can only be divided into exactly four child blocks will eventually lead
to ineffective borders.

To remedy these inherent drawbacks of the quad-tree structure, HEVC uses block
merging which allows us to code motion parameters very cheaply (in terms of bit
rate) in these ineffective border situations [9, 12, 23]. The algorithm was inspired
by the work of [10], in which the authors show that rate-distortion optimized
tree pruning for quadtree-based motion models can be substantially improved by
introducing a subsequent leaf merging step. In [22], the authors study the benefits of
leaf merging on a broader theoretical basis. Here we leave it at the intuitive example
given above and concentrate on the integration of block merging into HEVC.
Following from the observation of ineffective borders, block merging introduces
a terse syntax allowing for a sub-block to explicitly reuse the exact same motion
parameters contained in neighboring blocks. Like AMVP, it compiles a list of
candidate motion parameter tuples by picking from neighboring blocks. Then, an
index is signaled which identifies the candidate to be used. Block merging also
allows for temporal prediction by including into the list a candidate obtained from
previously coded pictures. A more detailed description is given in the following.

5.2.2.2 Merge Candidate List Construction

Although they appear similar, there is one main difference between the AMVP
and the merge candidate list. The AMVP list only contains motion vectors for
one reference list while a merge candidate contains all motion data including
the information whether one or two reference picture lists are used as well as a
reference index and a motion vector for each list. This significantly reduces motion
data signaling overhead. Section 5.2.2.3 describes the signaling in detail as well as
discusses how parsing robustness is achieved. Overall, the merge candidate list is
constructed based on the following candidates:

• up to four spatial merge candidates that are derived from five spatial neighboring
blocks

• one temporal merge candidate derived from two temporal, co-located blocks
• additional merge candidates including combined bi-predictive candidates and

zero motion vector candidates

Spatial Candidates

The first candidates in the merge candidate list are the spatial neighbors. Here, the
same neighboring blocks as for the spatial AMVP candidates are considered which
are described in Sect. 5.2.1.1 and illustrated in Fig. 5.4b. In order to derive a list
of motion vector predictors for AMVP, one MVP is derived from A0 and A1 and
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one from B0, B1 and B2, respectively in that order. However, for inter-prediction
block merging, up to four candidates are inserted in the merge list by sequentially
checking A1, B1, B0, A0 and B2, in that order.

Instead of just checking whether a neighboring block is available and contains
motion information, some additional redundancy checks are performed before
taking all the motion data of the neighboring block as a merge candidate. These
redundancy checks can be divided into two categories for two different purposes:

• avoid having candidates with redundant motion data in the list
• prevent merging two partitions that could be expressed by other means which

would create redundant syntax

When N is the number of spatial merge candidates, a complete redundancy
check would consist of N �.N �1/

2
motion data comparisons. In case of the five

potential spatial merge candidates, ten motion data comparisons would be needed
to assure that all candidates in the merge list have different motion data. During the
development of HEVC, the checks for redundant motion data have been reduced
to a subset in a way that the coding efficiency is kept while the comparison logic
is significantly reduced [1]. In the final design, no more than two comparisons are
performed per candidate resulting in five overall comparisons. Given the order of
{A1, B1, B0, A0, B2}, B0 only checks B1, A0 only A1 and B2 only A1 and B1.

For an explanation of the partitioning redundancy check consider the following
example. The bottom PU of a 2N�N partitioning is merged with the top one by
choosing candidate B1. This would result in one CU with two PUs having the same
motion data which could be equally signaled as a 2N�2N CU. Overall, this check
applies for all second PUs of the rectangular and asymmetric partitions 2N�N,
2N�nU, 2N�nD, N�2N, nR�2N and nL�2N. Please note that for the spatial merge
candidates, only the redundancy checks are performed and the motion data is copied
from the candidate blocks as it is. Hence, no motion vector scaling is needed here.

Temporal Candidate

The derivation of the motion vectors for the temporal merge candidate is the same
as for the TMVP described in Sect. 5.2.1.1. Since a merge candidate comprises all
motion data and the TMVP is only one motion vector, the derivation of the whole
motion data only depends on the slice type. For bi-predictive slices, a TMVP is
derived for each reference picture list. Depending on the availability of the TMVP
for each list, the prediction type is set to bi-prediction or to the list for which the
TMVP is available. All associated reference picture indices are set equal to zero.
Consequently for uni-predictive slices, only the TMVP for list 0 is derived together
with the reference picture index equal to zero.

When at least one TMVP is available and the temporal merge candidate is added
to the list, no redundancy check is performed. This makes the merge list construction
independent of the co-located picture which improves error resilience. Consider the
case where the temporal merge candidate would be redundant and therefore not
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Table 5.1 Order in which motion data combinations of different merge candidates,
that have been already inserted in the merge list, are tested to create combined bi-
predictive merge candidates

Combination Order 0 1 2 3 4 5 6 7 8 9 10 11

�x0; �y0; �t0 from Cand. 0 1 0 2 1 2 0 3 1 3 2 3
�x1; �y1; �t1 from Cand. 1 0 2 0 2 1 3 0 3 1 3 2

included in the merge candidate list. In the event of a lost co-located picture, the
decoder could not derive the temporal candidates and hence not check whether it
would be redundant. The indexing of all subsequent candidates would be affected
by this.

Additional Candidates

For parsing robustness reasons, which will be explained in Sect. 5.2.2.3, the length
of the merge candidate list is fixed. After the spatial and the temporal merge
candidates have been added, it can happen that the list has not yet the fixed length.
In order to compensate for the coding efficiency loss that comes along with the
non-length adaptive list index signaling, additional candidates are generated [25].
Depending on the slice type, up to two kind of candidates are used to fully populate
the list:

• Combined bi-predictive candidates
• Zero motion vector candidates

In bi-predictive slices, additional candidates can be generated based on the existing
ones by combining reference picture list 0 motion data of one candidate with and
the list 1 motion data of another one. This is done by copying �x0; �y0; �t0 from
one candidate, e.g. the first one, and �x1; �y1; �t1 from another, e.g. the second
one. The different combinations are predefined and given in Table 5.1.

When the list is still not full after adding the combined bi-predictive candidates,
or for uni-predictive slices, zero motion vector candidates are calculated to complete
the list. All zero motion vector candidates have one zero displacement motion vector
for uni-predictive slices and two for bi-predictive slices. The reference indices are
set equal to zero and are incremented by one for each additional candidate until the
maximum number of reference indices is reached. If that is the case and there are
still additional candidates missing, a reference index equal to zero is used to create
these. For all the additional candidates, no redundancy checks are performed as it
turned out that omitting these checks will not introduce a coding efficiency loss [21].
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5.2.2.3 Merge Motion Data Signaling and Skip Mode

The motion data signaling scheme using the merge mode is quite simple. For each
PU coded in inter-picture prediction mode, a so called merge_flag indicates
that block merging is used to derive the motion data. The merge_idx further
determines the candidate in the merge list that provides all the motion data needed
for the MCP. Therefore, instead of all the syntax elements needed for AMVP
based motion data coding described in Sect. 5.2.1.2, only a flag and a list index are
transmitted. This difference can be seen when comparing the input to the AMVP
and the merge motion data coding block in Fig. 5.2.

Besides this PU-level signaling, the number of candidates in the merge list is
signaled in the slice header. Since the default value is five, it is represented as a
difference to five (five_minus_max_num_merge_cand). That way, the five
is signaled with a short codeword for the 0 whereas using only one candidate,
is signaled with a longer codeword for the 4. Regarding the impact on the merge
candidate list construction process, the overall process remains the same although
it terminates after the list contains the maximum number of merge candidates. In
the initial design, the maximum value for the merge index coding was given by the
number of available spatial and temporal candidates in the list. When e.g. only two
candidates are available, the index can be efficiently coded as a flag. But, in order
to parse the merge index, the whole merge candidate list has to be constructed to
know the actual number of candidates. Assuming unavailable neighboring blocks
due to transmission errors, it would not be possible to parse the merge index
anymore. Fixing the number of merge candidates improves the parsing robustness
by decoupling the parsing and the merge candidate list construction while sacrificing
coding efficiency. Populating the list with the additional merge candidates presented
in Sect. 5.2.2.2 compensates again for that loss while keeping the parsing robustness.

A crucial application of the block merging concept in HEVC is its combination
with a skip mode. In previous video coding standards, the skip mode was used to
indicate for a block that the motion data is inferred instead of explicitly signaled and
that the prediction residual is zero, i.e. no transform coefficients are transmitted.
This mode is well suited to code static image regions where the prediction error
tends to be very small. In HEVC, at the beginning of each CU in an inter-picture
prediction slice, a skip_flag is signaled that implies the following:

• the CU only contains one PU (2N�2N partition type)
• the merge mode is used to derive the motion data (merge_flag equal to 1)
• no residual data is present in the bitstream

5.2.2.4 Coding Efficiency of HEVC Merge and Skip Mode

In this section, the coding efficiency of the HEVC merge and skip modes is
analyzed. This is done experimentally by disabling the merge mode as well as
the skip mode, i.e. removing merge_flag, merge_index and skip_flag
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Table 5.2 Average bit rate savings of HEVC merge and skip mode using
HM8.0

BD-rate [%]

Class Sequence RA-Main LB-Main LD-Main

A Traffic �8:8 n/a n/a
(2560 � 1600) PeopleOnStreet �6:5 n/a n/a

Nebuta �1:5 n/a n/a
SteamLocomotive �11:1 n/a n/a

B Kimono �9:6 �7:8 �5:4

(1920 � 1080) ParkScene �7:3 �7:0 �5:6

Cactus �11:7 �8:8 �6:9

Basketball Drive �9:1 �8:1 �6:1

BQTerrace �10:2 �10:3 �5:9

C Basketball Drill �7:5 �7:6 �6:1

(832 � 480) BQMall �9:2 �7:5 �5:7

PartyScene �4:8 �3:4 �2:5

RaceHorses �3:9 �4:3 �3:3

D Basketball Pass �6:1 �5:1 �4:0

(416 � 240) BQSquare �6:9 �3:3 �2:5

BlowingBubbles �6:1 �3:7 �3:1

RaceHorses �4:4 �3:9 �3:6

E FourPeople n/a �11:4 �8:5

(1280 � 720) Johnny n/a �20:0 �16:4

KristenAndSara n/a �15:0 �11:2

Average �7.3 �8.0 �6.0

syntax. The software used for this experiment is version 8.0 of the HEVC test model
reference software (HM) [13] with the random access main, low delay B and P main
coding configurations as described in [5].

The coding efficiency gains in terms of Bjøntegaard Delta (BD) rate [2], when
enabling the merge and skip modes, are reported in [9] and [12] and also summa-
rized in Table 5.2. Average bit rate savings between 6 % and 8 % are observed. It
can be seen that the gains for the random access main (RA-Main) and low delay
B main (LB-Main) configurations using bi-predictive B pictures are higher than
for the low delay P main (LP-Main) configuration, which is restricted to use uni-
prediction. Since the merge mode only uses a flag and an index to signal all motion
data, it is more efficient the more motion data signaling is omitted that way, e.g.
two sets of motion data in bi-prediction. Another observation is that merge and
skip modes are saving up to 20 % for the class E sequences. These sequences
represent videoconferencing content where the static background can efficiently be
coded using skip and merge modes. More detailed results and a comparison with an
AMVP-based direct mode can be found in [12].
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Fig. 5.7 Example of a CTU with a 64�64 luma CTB, when motion estimation of for PUs inside
a 32�32 motion estimation region is carried out independently, enabling the possibility to do it in
parallel

5.2.2.5 Merge Estimation Regions for Parallel Merge Mode Estimation

The way the merge candidate list is constructed introduces dependencies between
neighboring blocks. Especially in embedded encoder implementations, the motion
estimation stage of neighboring blocks is typically performed in parallel or at least
pipelined to increase the throughput. For AMVP, this is not a big issue since the
MVP is only used to differentially code the MV found by the motion search. The
motion estimation stage for the merge mode, however, would typically just consist
of the candidate list construction and the decision which candidate to choose, based
on a cost function. Due to the aforementioned dependency between neighboring
blocks, merge candidate lists of neighboring blocks cannot be generated in parallel
and represent a bottleneck for parallel encoder designs. Therefore, a parallel merge
estimation level was introduced in HEVC that indicates the region in which merge
candidate lists can be independently derived by checking whether a candidate block
is located in that merge estimation region (MER). A candidate block that is in
the same MER is not included in the merge candidate list. Hence, its motion data
does not need to be available at the time of the list construction. When this level
is e.g. 32, all prediction units in a 32�32 area can construct the merge candidate
list in parallel since all merge candidates that are in the same 32�32 MER, are not
inserted in the list. Figure 5.7 illustrates that example showing a CTU partitioning
with seven CUs and ten PUs. All potential merge candidates for the first PU0 are
available because they are outside the first 32�32 MER. For the second MER, merge
candidate lists of PUs 2–6 cannot include motion data from these PUs when the
merge estimation inside that MER should be independent. Therefore, when looking
at a PU5 for example, no merge candidates are available and hence not inserted in
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Table 5.3 Average bit rate
losses for different merge
estimation regions in terms of
BD-rate using HM5.0
reference software

Merge estimation region

8 � 8 16 � 16 32 � 32 64 � 64

RA-HE 0.1 % 0.6 % 1.6 % 2.7 %
LB-HE 0.2 % 0.7 % 2.0 % 3.4 %

the merge candidate list. In that case, the merge list of PU5 consists only of the
temporal candidate (if available) and zero MV candidates.

In order to enable an encoder to trade-off parallelism and coding effi-
ciency, the parallel merge estimation level is adaptive and signaled as
log2_parallel_merge_level_minus2 in the picture parameter set. The
following MER sizes are allowed: 4�4 (no parallel merge estimation possible),
8�8, 16�16, 32�32 and 64 � 64. A higher degree of parallelization, enabled by
a larger MER, excludes more potential candidates from the merge candidate list.
That, on the other hand, decreases the coding efficiency. The coding efficiency
losses in terms of BD-rate [2] for different MER sizes are reported in [28] and
summarized in Table 5.3. Results are generated using HM5.0 [13] with random
access high efficiency (RA-HE) and low delay B high efficiency (LB-HE) coding
configurations as described in [3].

When the merge estimation region is larger than a 4�4 block, another modifica-
tion of the merge list construction to increase the throughput kicks in. For a CU with
an 8�8 luma CB, only a single merge candidate list is used for all PUs inside that
CU.

5.2.3 Motion Data Storage Reduction

The usage of the TMVP, in AMVP as well as in the merge mode, requires the
storage of the motion data (including motion vectors, reference indices and coding
modes) in co-located reference pictures. Considering the granularity of motion
representation, the memory size needed for storing motion data could be significant.
HEVC employs motion data storage reduction (MDSR) to reduce the size of the
motion data buffer and the associated memory access bandwidth by sub-sampling
motion data in the reference pictures [20]. While H.264/AVC is storing these
information on a 4�4 block basis, HEVC uses a 16�16 block where, in case of
sub-sampling a 4�4 grid, the information of the top-left 4�4 block is stored. Due
to this sub-sampling, MDSR impacts on the quality of the temporal prediction.
Furthermore, there is a tight correlation between the position of the MV used in
the co-located picture, and the position of the MV stored by MDSR.

During the standardization process of HEVC, the impact of the sub-sampling
scheme as well as the interaction with the TMVP was investigated in a core
experiment on MDSR [15]. It turned out that storing the motion data of the
top left block inside the 16�16 area together with the bottom right and center
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TMVP candidates provide the best tradeoff between coding efficiency and memory
bandwidth reduction. Furthermore, the general impact of sub-sampling the motion
information was measured. While the 8�8 subsampling show no difference in
coding efficiency compared to 4�4, the current 16�16 scheme results in a coding
efficiency loss of 0.1 % BD-rate which is negligible and can be considered as being
in the noise margin.

5.3 Fractional Sample Interpolation

Interpolation tasks arise naturally in the context of video coding because the
true displacements of objects from one picture to another are independent of the
sampling grid of cameras. Therefore, in MCP, fractional-sample accuracy is used to
more accurately capture continuous motion. Samples available at integer positions
are filtered to estimate values at fractional positions. This spatial domain operation
can be seen in the frequency domain as introducing phase delays to individual
frequency components. An ideal interpolation filter for band-limited signals induces
a constant phase delay to all frequencies and does not alter their magnitudes. The
efficiency of MCP is limited by many factors—the spectral content of original and
already reconstructed pictures, camera noise level, motion blur, quantization noise
in reconstructed pictures, etc.

Similar to H.264/AVC, HEVC supports motion vectors with quarter-pixel
accuracy for the luma component and one-eighth pixel accuracy for chroma
components. If the motion vector has a half or quarter-pixel accuracy, samples
at fractional positions need to be interpolated using the samples at integer-sample
positions. The interpolation process in HEVC introduces several improvements over
H.264/AVC that contributes to the significant coding efficiency increase of HEVC.
In this section, these differences are first explained and then the complexity and
coding efficiency characteristics of the HEVC interpolation process are presented.

5.3.1 Overview

In order to improve the filter response in the high frequency range, luma and chroma
interpolation filters have been re-designed and the tap-lengths were increased. The
luma interpolation process in HEVC uses a symmetric 8-tap filter for half-sample
positions and an asymmetric 7-tap filter for quarter-sample positions. For chroma
samples, a 4-tap filter was introduced.

The intermediate values used in interpolation process are kept at a higher
accuracy in HEVC to improve coding efficiency. This is done as follows (please
refer to Fig. 5.9 for notation throughout the text, where integer-sample values are
shown with dark squares and the fractional-sample values are shown with white
squares):
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• H.264/AVC obtains the quarter-sample values by first obtaining the values of
nearest half-pixel samples and averaging those with the nearest integer samples,
according the position of the quarter-pixel [27]. However, HEVC obtains the
quarter-pixel samples without using such cascaded steps but by instead directly
applying a 7 or 8-tap filter on the integer pixels.

• In H.264/AVC, a bi-predictively coded block is calculated by averaging two uni-
predicted blocks. If interpolation is performed to obtain the samples of the uni-
prediction blocks, those samples are shifted and clipped to input bit-depth after
interpolation, prior to averaging. On the other hand, HEVC keeps the samples
of each one of the uni-prediction blocks at a higher accuracy and only performs
rounding to input bit-depth at the final stage, improving the coding efficiency by
reducing the rounding error.

The details of these features are presented in the following sections.

5.3.1.1 Redesigned Filters

An important parameter for interpolation filters is the number of filter taps as it has a
direct influence on both coding efficiency and implementation complexity. In terms
of implementation, it not only has an impact on the arithmetic operations but also
on the memory bandwidth required to access the reference samples. Although the
6-tap filter for estimating half-pixel positions in H.264/AVC produces a constant
phase delay of 0.5 for all frequency components due to symmetry, the passband
(range of frequencies where the magnitudes are relatively unaltered) is not large.
Increasing the number of taps can yield filters that produce desired response
for a larger range of frequencies which can help to predict the corresponding
frequencies in the samples to be coded. Considering modern computing capabilities,
the performance of many MCP filters were evaluated in the context of HEVC and a
coding efficiency/complexity trade-off was targeted during the standardization.

Consider the design of a half-pixel interpolation filter with 2N taps denoted
as h D Œh0; h1; � � � ; h2N �1�T . Due to the desired half-pixel symmetry only
N coefficients can be different, which can be denoted in the form h D
Œh0; h1; � � � ; hN �1; � � � ; h1; h0�

T . Now consider the interpolation of a DC signal
(with all samples equal). It is desired that the interpolated value be the same as
the input. Hence, we require 2 � PN �1

nD0 hn D 1, also known as the normalization
constraint. This further reduces the number of degrees of freedom from N to N �1.
In the case of a quarter-pixel interpolation filter however, only the normalization
condition

P2N �1
nD0 hn D 1 is imposed as symmetry is not necessary, which gives

2N � 1 degrees of freedom. The aim of interpolation filter design is to determine
these degrees of freedom so as to remain close to the desired frequency response.

Here a brief overview of the design of HEVC interpolation filters is provided.
For a detailed explanation the reader is referred to [17]. The basic idea is to forward
transform the known integer samples to the DCT domain and inverse transform
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Table 5.4 Filter coefficients
for luma interpolation in
MCP

Phase Luma filter coefficients

1/4 Œ�1; 4; �10; 58; 17; �5; 1�=64

1/2 Œ�1; 4; �11; 40; 40; �11; 4; �1�=64

Table 5.5 Filter coefficients
for chroma interpolation in
MCP

Phase Chroma filter coefficients

1/8 Œ�2; 58; 10; �2�=64

1/4 Œ�4; 54; 16; �2�=64

3/8 Œ�6; 46; 28; �4�=64

1/2 Œ�4; 36; 36; �4�=64

the DCT coefficients to the spatial domain using DCT basis sampled at desired
fractional positions instead of integer positions. Fortunately, these operations can
be combined into a single FIR filtering step. Let the available samples at integer
positions be denoted as a column vector s and the forward transform as a matrix B.
The DCT coefficients c can be computed as c D B � s. Since DCT basis is
composed of cosine functions (which are continuous in nature), they can be sampled
at fractional positions. Let the DCT basis sampled at desired fractional positions be
denoted by a row vector r. This is used to transform back the DCT coefficients
to the spatial domain, which results in the interpolated value Os D r � B � s. These
stages can be combined into a single filter f D r � B. In addition to the above
steps, the reference samples are smoothed in the actual HEVC design to combat
noise in the reference samples. Therefore the final interpolation filter can be written
in the form f D r � B � W, where W is a diagonal matrix with weights for
smoothing. The resulting filter coefficients are rounded to 6-bit precision (for a
simple fixed-point implementation) and an integer optimization is carried out under
the normalization constraint to ensure that the filter coefficients provide close to
desired frequency response even after rounding. For the chroma interpolation filters,
a slightly different smoothing of reference samples is performed during the filter
design. The filter coefficients’ bit-depth of 6 also makes it possible to realize the
entire MCP process for 8-bit videos using 16-bit intermediate buffers. The filter
coefficients resulting from the design described above for luma and chroma MCP
are given in Tables 5.4 and 5.5, respectively. The magnitude responses of half-pel
luma interpolation filters of H.264/AVC and HEVC are depicted in Fig. 5.8. It can
be seen that the half-pel interpolation filter of HEVC comes closer to the desired
response than the H.264/AVC filter.

5.3.1.2 High Precision Filtering Operations

In H.264/AVC, some of the intermediate values used within interpolation are
shifted to lower accuracy, which introduces rounding error and reduces coding
efficiency. This loss of accuracy is due to several reasons. Firstly, the half-pixel
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Fig. 5.8 Comparison of magnitude response of half-pel interpolation filters of H.264/AVC and
HEVC relative to an ideal filter
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Fig. 5.9 Fractional positions used in luma motion compensation with 1/4 pixel accuracy

samples obtained by 6-tap FIR filter are first rounded to input bit-depth, prior
to using those for obtaining the quarter-pixel samples. To illustrate this effect,
let’s consider interpolating the quarter-pixel sample a0,0 using the H.264/AVC
interpolation process. In order to obtain a0,0, the half-pixel sample b0,0 needs to
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be obtained first by applying a 6-tap horizontal FIR filter and rounding the result to
input bit-depth, as shown in Eq. (5.6). The quarter-pixel sample a0,0 is then obtained
by averaging the half-pixel sample, b0,0 with the integer sample A0,0 as shown in
Eq. (5.7). Because b0,0 is first rounded back to input bit-depth, a rounding error of
33=128 is introduced to obtain a0,0 [16].

b0;0 D .A�2;0 � 5 � A�1;0 C 20 � A0;0 C 20 � A1;0 � 5 � A2;0 C A3;0 C 16/ >> 5

(5.6)

a0;0 D .A0;0 C b0;0 C 1/ >> 1 (5.7)

Instead of using a two-stage cascaded filtering process, HEVC interpolation filter
computes the quarter-pixels directly using a 7-tap filter using the coefficients shown
in Sect. 5.3.1.1, which significantly reduces the rounding error to 1=128.

The second reason for reduction of accuracy in H.264/AVC motion compensation
process is due to averaging in bi-prediction. In H.264/AVC, the prediction signal of
the bi-predictively coded motion blocks (denoted by S) is obtained by averaging
prediction signals from two prediction lists (denoted by S1 and S2) as shown in
Eq. (5.8).

S D .S1 C S2 C 1/ >> 1 (5.8)

The averaging operation shown in Eq. (5.8) is done at the precision of input
bit-depth (i.e. S1 and S2 are 8-bit for an 8-bit video). If the motion vectors have
fractional pixel accuracy, then S1 and S2 are obtained using interpolation and the
intermediate values are rounded to input bit-depth. In HEVC, instead of averaging
each prediction signal at the precision of the bit-depth, they are averaged at a higher
precision if fractional motion vectors are used for the corresponding block [18].
This means that, if the motion vectors to obtain S1 or S2 have sub-pixel accuracy,
the interpolation process does not round the intermediate values to input-bit depth
prior to averaging, but keeps it at a higher precision. It should be noted that for
the cases where one of the prediction signal is obtained without interpolation (i.e.
the corresponding motion vector has an integer pixel accuracy) the bit-depth of the
corresponding prediction signal is first increased accordingly before bi-prediction
averaging so that both prediction signals are averaged at the same bit-depth.

This process is illustrated in Fig. 5.10 (a) for the case of H.264/AVC where
bi-prediction averages two prediction signals at input bit-depth and (b) for HEVC
where the averaging is performed at a higher bit-depth and intermediate rounding
step is not used.

5.3.1.3 Other Important Features

To make sure the intermediate values do not overflow the 16-bit registers, after
horizontal interpolation the intermediate values are shifted to the right by bit depth
minus 2. This means that when the bit depth of the video is more than 8 bits, the
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Fig. 5.10 Bi-prediction process in (a) H.264/AVC and in (b) HEVC. Reproduced with permission
from [17], © 2013 IEEE

order in which horizontal filtering and vertical filtering is done needs to be specified
(horizontal first in HEVC). This specific order was selected mainly to simplify
implementation on specific architectures.

It should also be noted that in HEVC the only clipping operation is at the
very end of the motion compensation process, with no clipping in intermediate
stages. As there is also no rounding in intermediate stages, HEVC interpolation
filter allows certain implementation optimizations. Consider the case where bi-
prediction is used and motion vectors of each prediction direction points to the same
fractional position. In these cases, final prediction could be obtained by first adding
two reference signals and performing interpolation and rounding once, instead of
interpolating each reference block, thus saving one interpolation process.

5.3.2 Complexity and Coding Efficiency Characteristics

In this section, the complexity of the interpolation filter design in HEVC is
analyzed and compared with that of H.264/AVC. In addition, the coding efficiency
improvements brought with the improved design are also presented.
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5.3.2.1 Complexity of HEVC Interpolation Filter

When evaluating the complexity of a video coding algorithm, several aspects, such
as memory bandwidth, number of operations and storage buffer size need to be
carefully considered.

In terms of memory bandwidth, utilizing longer tap filters in HEVC (7–8 tap
filter for luma sub-pixels and 4-tap filter for chroma sub-pixels) compared to
shorter filters in H.264/AVC (6-tap filter for luma sub-pixels and bilinear filter for
chroma) increases the amount of data that needs to be fetched from the reference
memory. The worst case happens when a small motion block is bi-predicted and its
corresponding motion vector points to a sub-pixel position where two-dimensional
filtering needs to be performed (such as position f0,0). In order to reduce the worst
case memory bandwidth, HEVC introduces several restrictions. Firstly, the smallest
prediction block size is fixed to be 4 � 8 or 8 � 4, instead of 4 � 4. In addition, these
smallest block sizes of size 4�8 and 8�4 can only be predicted with uni-prediction.
With these restrictions in place, the worst-case memory bandwidth of HEVC
interpolation filter is around 51 % higher than that of H.264/AVC. The increase
in memory bandwidth is not very high for larger block sizes. For example, for a
32 � 32 motion block, HEVC requires around 13 % increased memory bandwidth
over H.264/AVC [17].

Similarly, the longer tap-length filters increase the number of arithmetic opera-
tions required to obtain the interpolated sample. If the complexity is measured by
the number of multiply-and-add operations (MACs), interpolation filter in HEVC
represents roughly a 20 % increase over H.264/AVC filter for 8-bit video.

The high-precision bi-directional averaging described in Sect. 5.3.1.2 increases
the size of intermediate storage buffers for storing the temporary uni-prediction
signals as each one of the prediction signals need to be stored at a higher bit-depth
compared to H.264/AVC before the bi-directional averaging takes place.

HEVC uses 7-tap FIR filter for interpolating samples at quarter-pixel locations,
which has an impact on motion estimation of a video encoder. An H.264/AVC
encoder could store only the integer and half-pel samples in the memory and
generate the quarter-pixels on-the-fly during motion estimation. This would be
significantly more costly in HEVC because of the complexity of generating each
quarter-pixel sample on-the-fly with a 7-tap FIR filter. Instead, an HEVC encoder
could store the quarter-pixel samples in addition to integer and half-pixel samples
and use those in motion estimation. Alternatively, an HEVC encoder could estimate
the values of quarter-pixel samples during motion estimation by low complexity
non-normative means.

5.3.2.2 Coding Efficiency of HEVC Interpolation Filter

In this section, the coding efficiency of interpolation filter design in HEVC is
analyzed. For this purpose, the H.264/AVC interpolation filter is first implemented
in version 6.0 of the HEVC test model and then run with the test conditions advised
by JCT-VC [4]. Same test model is also run with the HEVC interpolation filter
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Table 5.6 Average bit rate savings of HEVC interpolation filter for the
luma component using HM6.0

BD-rate [%]

Class Sequence RA-Main LB-Main LD-Main

A Traffic �2:4 n/a n/a
(2560 � 1600) PeopleOnStreet 0.1 n/a n/a

Nebuta 0.4 n/a n/a
SteamLocomotive �1:0 n/a n/a

B Kimono �1:8 �2:6 0.6
(1920 � 1080) ParkScene �2:7 �4:5 �2:2

Cactus �1:3 �2:9 �0:8

Basketball Drive �2:0 �3:1 �0:2

BQTerrace �5:0 �7:1 0.5

C Basketball Drill �2:5 �3:6 �2:1

(832 � 480) BQMall �4:3 �5:5 �2:7

PartyScene �10:7 �11:9 �10:5

RaceHorses �1:2 �2:2 �0:1

D Basketball Pass �1:8 �2:7 �1:0

(416 � 240) BQSquare �21:6 �21:7 �18:0

BlowingBubbles �7:5 �9:1 �7:6

RaceHorses �1:8 �3:4 �2:3

E FourPeople n/a �2:0 0.6
(1280 � 720) Johnny n/a �6:8 �2:2

KristenAndSara n/a �3:9 �0:5

Average �4:0 �4:9 �2:6

and the results are compared. This experiment is conducted to see how much gain
collectively all the improvements the HEVC interpolation filter brings. The test
conditions can be summarized as:

• Four quantization values used: 22, 27, 32 and 37
• A total number of 24 different sequences are coded. These sequences are divided

into different classes that represent different use-cases and video characteristics.
• Tests are conducted for three different prediction structures: Random Access,

Low Delay with B pictures and Low Delay with P pictures.
• The coding efficiency is measured by using the Bjøntegaard-Delta bit rate

measure [2].

The detailed results are shown in Table 5.6 for the luma component, where it
is shown that on average, the interpolation filter of HEVC brings 4.0 % coding
efficiency gain. The results for the chroma component is also summarized in
Table 5.7 where the average coding efficiency gains reach 11.27 %. For some
sequences, especially for those that contain more high frequency content, gains
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Table 5.7 Average bit rate savings of HEVC interpolation filter for the
chroma component

BD-rate [%]

RA-Main LB-Main LD-Main

Class Cb Cr Cb Cr Cb Cr

A (2560 � 1600) �10:8 �11:3 n/a n/a n/a n/a
B (1920 � 1080) �10:8 �12:2 �14:7 �16:8 �5:8 �6:5

C (832 � 480) �10:3 �10:8 �13:0 �13:5 �8:9 �9:6

D (416 � 240) �15:3 �17:1 �20:4 �21:7 �16:6 �18:1

E (1280 � 720) �2:4 �2:5 �5:4 �4:7 �2:5 �2:8

Average �11.7 �12.8 �13.3 �14.3 �7.4 �8.1

become very large and become more than 20 %. Further experiments show that
close to half of this gain is due to high precision filter operations as described in
Sect. 5.3.1.2 and the rest of the gain is due to improved filter coefficients with longer
tap-lengths.

5.4 Weighted Sample Prediction

Similar to H.264/AVC, HEVC includes a weighted prediction (WP) tool that
is particularly useful for coding sequences with fades. In WP, a multiplicative
weighting factor and an additive offset are applied to the motion compensated
prediction. In principle, WP replaces the inter prediction signal P by a linearly
weighted prediction signal OP D w � P C o, where w is an Illumination
Compensation weight and o is an offset. Care is taken to handle uni-prediction
and bi-prediction weights appropriately using the flags weighted_pred_flag
and weighted_bipred_flag transmitted in the Picture Parameter Set (PPS).
Consequently, WP has a very small overhead in PPS and slice headers contain
only non-default WP scaling values. WP is an optional PPS parameter and it may
be switched on/off when necessary. The inputs to the WP process are: the width
and the height of the luma prediction block, prediction samples to be weighted,
the prediction list utilization flags, the reference indices for each list, and the color
component index. Weighting factors w0 and w1, and offsets o0 and o1 are determined
using the data transmitted in the bitstream. The subscripts indicate the reference
picture list to which the weight and the offset are applied. The output of this process
is the array of prediction sample values. The WP process, for the case when only
the list L0 is used, can be written in a simplified form as:

OP Œx�Œy� D Clip3.0; max_val; PL0Œx�Œy� � w0 C o0/ (5.9)

where x and y denote spatial coordinates within the prediction block and max_val
represents the maximum value in the considered bit depth. Additionally, a log
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weight denominator (LWD) rounding factor may be used before adding the offset.
For the case of bi-prediction, the value to be clipped is calculated as follows (similar
rounding offset is used for uni-prediction case as well):

.PL0Œx�Œy��w0 CPL1Œx�Œy��w1 C.o0Co1 C1/ � LWD/ � .LWDC1/ (5.10)

In H.264/AVC, weight and offset parameters are either derived by relative distances
between the current picture and the reference distances (implicit mode) or weight
and offset parameters are explicitly signaled (explicit mode) [6]. Unlike H.264/AVC,
HEVC only includes explicit mode as the coding efficiency provided by deriving the
weighted prediction parameters with implicit mode was considered negligible.

It should be noted that the weighted prediction process defined in HEVC version
1 was found to be not optimal for higher bit-depths as the offset parameter is
calculated at low precision. The next version of the standard will likely modify the
derivation of the offset parameter for higher bit-depths [24].

The determination of appropriate WP parameters in an encoder is outside the
scope of the HEVC standard. Several algorithms for estimating WP parameters have
been proposed in literature. Optimal solutions are obtained when the Illumination
Compensation weights, motion estimation and Rate Distortion Optimization (RDO)
are considered jointly. However, practical systems usually employ simplified tech-
niques, such as determining approximate weights by considering picture-to-picture
mean variation.

5.5 Summary and Conclusions

The inter-picture prediction part of the HEVC video coding standard is not
introducing a revolutionary whole new design. Moreover, it can be seen as a
steady improvement and generalization of all parts known from previous video
coding standards, e.g. H.264/AVC. The motion vector prediction was enhanced with
advanced motion vector prediction based on motion vector competition. An inter-
prediction block merging technique significantly simplified the block-wise motion
data signaling by inferring all motion data from already decoded blocks. When
it comes to interpolation of fractional reference picture samples, high precision
interpolation filter kernels with extended support, i.e. 7/8-tap filter kernels for luma
and 4-tap filter kernels for chroma, improve the filtering especially in the high
frequency range. Finally, the weighted prediction signaling was simplified by either
applying explicitly signaled weights for each motion compensated prediction or just
averaging two motion compensated predictions.
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