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This paper proposes an image interpolation algorithm exploiting sparse representation for
natural images. It involves three main steps: (a) obtaining an initial estimate of the high
resolution image using FIR filtering, (b) promoting sparsity in a selected dictionary
through hard thresholding to obtain an approximation, and (c) extracting high frequency
information from the approximation to refine the initial estimate. For the sparse
modeling, a shearlet dictionary is chosen to yield a multiscale directional representation.
The proposed algorithm is compared to several state-of-the-art methods to assess its
objective and subjective performance. Compared to the cubic spline interpolation method,
an average PSNR gain of around 0.8 dB is observed over a dataset of 200 images.

& 2015 Elsevier B.V. All rights reserved.
Image interpolation refers to generating a high resolu-
tion (HR) image from an input low resolution (LR) image.
The resolution of an image can be defined in various ways,
e.g., based on:
�
 the number of pixels in the image,

�
 the characteristics of the physical sensing device in the

camera,

�
 the effective sharpness as perceived by a human

observer.

To quantify the resolution based on the first method is
simple, but the latter two are considerably more complex.

Interpolation tasks have regained attention because
images/videos are being viewed on displays of different
sizes, like mobile phones, tablets, laptops and PCs. More
recently, 4K displays are becoming popular, however,
content to be displayed might be available in a lower
ofer.de
resolution. Interpolation also finds many applications in
computer vision, graphics, compression, editing, surveil-
lance and texture mapping. Details synthesis in image
interpolation can also be used as a tool for spatial scal-
ability in video coding.

Many established methods are available for interpola-
tion, e.g., FIR filtering and spline based schemes. These
techniques may be sufficient for certain applications, but
can cause blurring, ringing or other visual artifacts. The
main aim of this paper is to overcome these shortcomings
using the assumption that the desired HR image can be
represented as a sparse linear combination of few basic
elements. Images show geometric structures like edges,
and conventional Fourier or DCT domains are not well
suited for accurate modeling or extraction of such geo-
metric structures. In our proposed method, we use a
Shearlet dictionary for modeling HR images, since it
provides optimally sparse representations for a large class
of multidimensional data [25]. We show that enforcing
sparsity on the coefficients of the Shearlet representation
helps to improve the regularity along edges in the result-
ing HR images.
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1. State-of-the-art

1.1. Linear methods

Signal processing theory for band limited signals advo-
cates sampling higher than the Nyquist rate and recovery
using a sinc interpolation [38,46]. The assumption of band
limitedness does not hold for most images due to the
existence of sharp edges. However, conventional schemes
adhere to this philosophy and approximate the ideal low
pass filter to produce acceptable results for many practical
applications. Techniques like bilinear or bicubic interpola-
tion are some popular examples that have very low
computational complexity. Extending the sampling theory
to shift‐invariant spaces without band limiting constraints
has led to a generalized interpolation framework, e.g., B-
spline [45] and MOMS interpolation [5] that provide
improvements in image quality for a given support of
basis functions. However, these linear models cannot
capture the fast evolving statistics around edges. Increas-
ing the degree of the basis functions in these linear models
helps to capture higher order statistics but results in
longer effective support in the spatial domain and hence
produces artifacts like ringing around edges.

1.2. Directional methods

To improve the linear models, directional interpolation
schemes have been proposed. These perform interpolation
along the edge directions and try to avoid filtering across
the edges. Some schemes in this class use edge detectors
[2,40]. The method in New edge directed interpolation
(NEDI) [28] computes local covariances in the input image
and uses them to adapt the interpolation at the higher
resolution, so that the support of the interpolator is along
the edges. However, the resulting images still show some
artifacts (cf. Section 5). The iterative back projection [23]
technique improves image interpolation when the down-
sampling process is known. Its basic idea is that the
reconstructed HR image from the LR image should produce
the same observed LR image when it is passed through the
same blurring and downsampling process. However, the
downsampling filter may not be known in many cases, or
the input image may be camera captured, where the
optical anti-alias filter used within the sampling system
is not known during the subsequent image processing
stages. Therefore, it is desirable to design a method that
does not rely directly on the knowledge of the down-
sampling process.

1.3. Sparsity based methods

Image interpolation can be seen as an estimation
problem where the input data are inadequate. Naturally,
the solution to this problem is not unique due to the lack
of information in the HR grid. A popular idea used in such
underdetermined problems is to exploit the structure of
the desired solution. For images, sparsity in transform
domains has proven itself to be a very useful prior
[14,35,36]. Sparse approximation can be viewed as approx-
imating a signal with only a few expansion coefficients
[37]. Sparsity priors have also been proposed for image
interpolation, e.g., in [33,47,32]. The method in [33] uses a
contourlet transform for sparse approximation and is
designed for an observation model that assumes that the
LR image is the low pass subband of a wavelet transform. It
uses the same transform in a recovery framework, so it
relies directly on knowledge of the downsampling process.
We follow a similar recovery principle, but design a system
so that it works for typical anti-aliased LR images instead
of requiring a specific wavelet transform. The method in
[47] involves jointly training two dictionaries for the low-
and high-resolution image patches. It then performs a
sparsity based recovery, but involves high search complex-
ity to determine a sparse approximation in the trained
dictionary (observed to be more than 100x slower than
[33]). The method in [32] considers the case when the LR
image produced by sub-sampling a HR image is aliased.
The method in [9] learns a series of compact sub-
dictionaries and assigns adaptively a sub-dictionary to
each local patch as the sparse domain. The K-SVD algo-
rithm proposed in [1] and its extensions are commonly
used for learning an overcomplete dictionary. These meth-
ods depend on the similarity of training and test patches,
and the number of the selected examples, which are
typical issues in learning-based algorithms. Furthermore,
analytically determined transforms have structures that
can be exploited to produce a fast implementation, which
might be hard to impose during dictionary learning.

1.4. Discussion of the proposed method

We recognize the fact that linear models such as
interpolation based on FIR filters are faithful in interpolat-
ing the low frequency components but distort the high
frequency components in the upsampled image. An itera-
tive framework, based on [20,33], is proposed that com-
bines the output from an initial interpolator and detail
components from a denoised approximation. The method
used here for denoising is the so-called shrinkage or
thresholding approach, i.e., by transforming the signal to
a specific domain, setting the transform coefficients below
a certain (absolute) value to zero and inverse transforming
the coefficients to get back an approximation. The domain
used for transforming is chosen so that the coefficients
with large absolute values capture most of the geometric
features and the coefficients with low absolute values
constitute noise or finer details. To this end, mul-
ti-resolution transforms or multi-resolution directio-
nal transforms are preferred. The concepts of multi-
resolution and directionality in transforms are reviewed
in Section 3. Using this, a framework for details synthesis
in interpolation is proposed in Section 4. In fact, wavelet
domain thresholding has been successfully applied to
many denoising problems [11,12]. Due to the subsampling
in orthogonal wavelet transforms, they are not translation
invariant. But, unlike a typical compression scenario, the
number of transform coefficients generated during model-
ing or denoising need not be the same as the number of
input samples. This is exploited by removing the sub-
sampling in the wavelet transform and is shown to yield
better denoising results [13,15]. Super-resolution methods
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that use a sequence of images can further improve
the quality. However, these methods are beyond the scope
of this paper and only single frame interpolation is
considered.

2. Interpolation problem formulation

We consider a setup in which the input LR image to be
interpolated has been produced from an original HR image
through anti-aliasing and decimation. This way, the LR
image does not have evident visual artifacts, but does have
loss of information. For instance, the anti-alias low pass
filter can be an optical filter in a camera or a digital filter in
an image processing pipeline.

Let the (unknown) HR original signal of dimensions N �
1 be denoted as s. Let the (unknown) low pass filter g ½k�
followed by a decimation together be represented as a
downsampling matrix G of dimension n� N, where noN.
We are given the result y of dimension n� 1 as the LR
input to the interpolation system, as depicted in Fig. 1.

One way to estimate an HR signal ~x is by solving an
optimization problem of the form

min
~x

Dð ~xÞþλ � Rð ~xÞ; ð1Þ

where Dð ~xÞ is a fidelity term that penalizes the difference
between the given LR signal y and the LR signal obtained
by downsampling the estimated HR signal ~x using the
downsampler G, while Rð ~xÞ is a regularizer that promotes
sparsity of the estimated HR signal in a transform domain
and λ is a regularization parameter. Typically, the fidelity
term is chosen as an L2 norm, i.e., Dð ~xÞ ¼ JG � ~x�yJ2,
which requires the explicit knowledge of G. If we need to
find the sparsest solution, we need to choose the penalty
function Rð ~xÞ as the L0 (pseudo) norm of the transform
coefficients which is unfortunately an NP-hard problem
[34]. If the penalty function Rð ~xÞ is chosen to be the L1
norm of the transform coefficients, it has been shown that
it has the effect of promoting sparsity in the transform
domain under certain conditions [11]. It then becomes a
convex optimization problem and can be solved using
general convex solvers, e.g., interior point methods [6,4].
However, there are simpler gradient-based algorithms for
solving functions of this form and a popular method is
called iterative shrinkage/thresholding algorithm (ISTA)
[18,8,48]. It is also known by other names in signal
processing literature, e.g., thresholded Landweber method
and basis pursuit denoising [16]. Optimizing objective
functions of this form is an active area of research and
many fast algorithms, e.g., [3] are being proposed in the
2 2
Input LR
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Fig. 1. Image recovery problem formulation. Notation: unknown original
HR signal s; given input LR signal y; estimated output HR signal ~x .
literature. Other popular approaches include greedy tech-
niques such as matching pursuits and orthogonal match-
ing pursuits [31,44].

The proposed framework follows the principle of image
recovery through sparse reconstructions and iterated
denoising [20,21]. This procedure has similarities to ISTA
and offers some robustness to noise and transform selec-
tion. While atomic decomposition techniques (L1, greedy,
etc)build a solution bottom-up, iterated denoising takes a
top-down approach, starting from an initial point and
pruning the signal components that it detects as noise. A
detailed comparison of iterated denoising versus atomic
decomposition methods for missing data estimation can
be found in [19].
3. Multi-resolution directional transforms

One of the main goals of a transform representation is
to determine efficient linear expansions for images. Effi-
ciency is generally measured in terms of the number of
elements needed in a linear expansion. To quantify the
number of elements needed for a linear expansion, image
models are employed. Commonly, images are considered
as uniform 2D functions separated by singularities (e.g.,
edges). The singularities themselves are modeled as
smooth curves. In the past decades, developments in
applied harmonic analysis have provided many useful
tools for signal processing. Wavelets are good at isolating
singularities in 1D. Extending wavelets to 2D, makes them
well adapted to capture point-singularities. But in natural
images, there are mostly line– or curved– singularities (e.
g., directional edges). These are also known as anisotropic
features as they are dominant along certain directions. To
capture such features, there has been extensive study in
constructing and implementing directional transforms
aiming to obtain sparse representations of such piecewise
smooth data. The curvelet transform is a directional trans-
form which can be shown to provide optimally sparse
approximations of piecewise smooth images [7]. However,
curvelets offer limited localization in the spatial domain
since they are band limited. Also, they are based on
rotations which introduce difficulties in achieving a con-
sistent discrete implementation. Contourlets are com-
pactly supported directional elements constructed based
on directional filter banks [17]. Directional selectivity in
this approach is artificially imposed by a special sampling
rule of filter banks which often causes artifacts. Moreover,
no theoretical guarantee exists for sparse approximations
for piecewise smooth images. Recently, a novel directional
representation system known as shearlets has emerged,
which provides a unified treatment of continuous as well
as discrete models, allowing optimally sparse representa-
tions of piecewise smooth images [25,29]. This simplified
model of natural images, which emphasizes anisotropic
features, most notably edges, is found to be consistent
with many models of the human visual system [26]. The
framework proposed in this paper is applicable for all
these transforms, although shearlets are observed to
provide the best performance among the considered
transforms.
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Fig. 2. Example of shearlet elements for three scales generated using [39]. They are directional and band pass in nature. Top row: filter in spatial domain,
bottom row: corresponding filter in frequency domain. Left to right: increasing center frequencies.
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Multi-resolution directional transforms can also be
seen as filterbanks. The decomposition is implemented
using an analysis filter bank, while the reconstruction is
implemented using a synthesis filter bank. One branch of
the filterbank is designed as a low pass channel that
captures a coarse representation of the input signal fol-
lowed by band- or high-pass channels. Each of these
branches is adapted to capture signal components at
different scales and directions.
3.1. Introduction to shearlets

In modeling image features that are typically anisotro-
pic, other than the location and scale, we would like to
include the orientations of the features. Therefore, a trans-
form is built by combining a scaling operator to generate
elements at different scales, an orthogonal operator to
change their orientations, and a translation operator to
displace these elements over the 2D plane [26]. Consider a
general model for directional transforms built from a
generating function ψ ðtÞ by orienting it using Os, scaling
it using Aa, and translating it using Tm, so that

Sðψ Þ ¼ Tm � Aa � Os � ψ : ð2Þ

Below, we discuss the choice of these three operators that
leads to the so-called shearlet system Sðψ Þ.

Firstly, to change the orientation of the generating func-
tion ψ, an obvious choice is a rotation operator. However,
rotations destroy the integer lattice (except for trivial rota-
tions that switch the axes). In other words, integer locations
may get mapped to fractional locations after a rotation. This
leads to the problem of obtaining a discrete transform that is
consistent with the continuous transform (where approxi-
mation properties have been optimized). As an alternative
orientation operator, consider the shearing matrix

Os ¼
1 s
0 1

� �
: ð3Þ

This achieves orientation changes using the slope s rather
than a rotation angle. It has the advantage of leaving the
integer lattice invariant when s is chosen as an integer.

Next, the scaling operator is considered. Equal scaling
along both axes will not be able to capture anisotropic
features, hence a different scaling for the axes is required.
Consider the case when one axis is scaled by the factor a
and the other by a1=2, so that

Aa ¼
a 0
0 a1=2

� �
: ð4Þ

Although other ratios for scaling the axes are possible, this
choice, known as parabolic scaling, optimizes the approx-
imation properties for the piecewise smooth image model
considered.

Finally, a translation operator is defined that shifts the
generating function

Tm ψ ðtÞ-ψ ðt�mÞ: ð5Þ
The conditions on the generating function ψ so that the

shearlet system Sðψ Þ can represent any square-integrable
function are known as admissibility conditions [26].

Directional elements capture high frequencies along
certain directions and are not good at representing the
low frequencies. Therefore, in general, a low pass filter is
used to extract the low frequency part and the directional
elements are operated on the remaining signal, leading to
the so-called cone-adapted shearlet transform. By varying
the parameters of the shearlet system, different properties
can be achieved, e.g., compact support [24], orthonormality
[26], etc. However, a shearlet system with compact support
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that is also orthonormal is, most likely, not achievable [22].
Nevertheless, compactly supported shearlet systems have
good frame properties, i.e., they are close to being a
tight frame.

Fig. 2 shows examples of practical filters (shearlet) at a
certain orientation and three different scales.

4. Proposed framework for high frequency synthesis

The proposed framework, depicted in Fig. 3, uses the
iterated denoising principle. It involves:
�

I
LR

Fig
is u
com
refi
Sparsity constraint: Promoting sparsity, e.g., in a multi-
resolution directional transform domain to improve
regularity along edges.
�
 Data constraint: Enforcing constraints according to
known data.

The problem considered in [20] is that of filling missing
samples in an image, where enforcing known data con-
straints are achieved by replacing input samples at the
known locations after the sparsity promoting step. How-
ever, in the context of image interpolation, the available LR
input image constitutes the known data. The iterated
denoising principle has been applied to image interpola-
tion using contourlets in [33], however, utilizing the
knowledge of the LR image generation during the HR
image estimation. Specifically, the LR image was produced
through the low pass subband of a specific wavelet trans-
form and the same transform was used during the HR
image estimation to enforce the known data constraint. It
is a goal of the proposed approach to interpolate a given LR
image without the knowledge of the exact method gen-
erating the LR image. Therefore, the iterative procedure is
redesigned so that the input LR image can be used as the
known data constraint, instead of requiring the low pass
subband of a specific wavelet transform.

4.1. Initial upsampling

The first stage of the proposed framework involves a
conventional FIR filter based interpolation of the LR signal
yARn to produce an initial HR estimate x0ARN . It can be
expressed in a vector notation as

x0 ¼U � y; ð6Þ
where the upsampler U specifies the filter coefficients
nput
 image

Initial upsampler Output
HR image

Transform coeff.
thresholding

High frequency
extraction

( − ∙ )

( )

. 3. Framework for image interpolation. A linear model, e.g., FIR filter
sed to produce an initial upsampled image. Then, high frequency
ponents are extracted from a sparse approximation and used to
ne the initial upsampled image.
used to generate the samples of x0. This process can also
be seen as a zero insertion in the spatial domain followed
by a low pass filter to remove the spectral replication due
to the zero insertion. Since the coefficients in U act as a
low pass filter, some high pass details would be missing/
distorted in the initial HR estimate compared to the HR
original. Therefore, the initial HR estimate is seen as a
noisy version of an unknown HR original and then refined
in an iterative manner. The refined HR signal is denoted as
~x, which, during the first iteration, is set as ~x1 ¼ x0.

4.2. Sparsity promoting

As stated earlier, a dictionary consisting of multi-
resolution directional transform elements is considered.
Promoting sparsity in such a dictionary results in regular
directional structures in the approximated signal. Denot-
ing the iteration number of refinement as k, the sparsity
promoting step operates as follows:
�
 the signal ~xk is forward transformed to the selected
domain (resulting in directional components in differ-
ent scales),
�
 the transform coefficients are hard-thresholded, and

�
 inverse transformed to generate an approximation ak.

The overall operation is written compactly as ak ¼ Tð ~xkÞ.
This denoising step is closely related to techniques such as
ISTA for L1 regularization but has some differences [19].

4.3. Known data constraint

Then, we enforce the known LR data constraint. It is
done by assuming that the initial upsampled signal x0 is
equal to the low pass channel of a two-channel filterbank,
depicted in Fig. 1. The missing high pass channel is
generated by using the approximated signal ak. Hence, it
is required to separate the signal ak into low pass and high
pass channels. At this stage we face the issue of the
unknown downsampler that generated the input LR signal
y. A blind deconvolution would be necessary to jointly
estimate the unknown downsampler and undo its effect,
which is very difficult. Instead, a downsampler D is chosen
so that the product P ¼U � D acts as a projection matrix, i.
e., P2 ¼ P. Then, enforcing the known data constraint can
be implemented by only considering the components of ak

that do not fall on the low pass projection space, i.e., using
the high pass components of ak for refinement. However,
there could be a mismatch between the utilized D and the
actual external downsampler that produced the LR signal.
This will be experimentally studied in Section 5.6 by fixing
the upsampler and downsampler of the proposed system,
but varying the actual external downsampler to produce
different LR inputs to the proposed system and recording
the performance variation.

Summarizing, we can write the low pass lk and the high
pass hk decomposition of the approximated signal ak as

lk ¼U � D � ak;

hk ¼ ðI�U � DÞ � ak: ð7Þ



Table 1
Set of FIR filters considered for initial interpolation.

Symbol Interpolation filter coefficients

u2 [1, 1] /2
u4 [�1, 9, 9, �1]/16
u6 [1, �5, 20, 20, �5, 1]/32
u8 [�1, 4, �11, 40, 40, �11, 4, �1]/64
u12 [�1, 4, �10, 22, �48, 161, 161, �48, 22, �10, 4, �1]/256
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4.4. Refinement step

The high pass component hk is used for refinement by
adding it to the initial HR estimate x0, to produce a refined
HR estimate ~xkþ1, i.e.,

~xkþ1⟵x0þhk: ð8Þ
For the first iteration, the vector h0 is initialized to zero,
therefore, ~x1 ¼ x0.

By combining Eqs. (6)– (8), the overall system connect-
ing the input LR signal yARn to the refined HR signal
~xkþ1ARN can now be expressed as

~xkþ1⟵U � yþðI�U � DÞ � Tð ~xkÞ: ð9Þ
The iterative procedure is repeated for a certain max-

imum number of iterations and ~xkþ1 after the last iteration
is taken as the output HR image.

Fig. 4 depicts example images during different stages of
the proposed approach. It can be seen that the initial
upsampled image is blurry around the diagonal edges. The
step of transform domain thresholding retains only the
dominant information. After adding the high frequency
part, the resulting image looks slightly sharper.

5. Simulation results

The proposed algorithm is tested for both subjective
and objective performance. For a subjective evaluation,
original images are directly used as LR inputs and the HR
outputs are inspected for visual quality/artifacts. Using
HF details
Transf. coeff.
thresholding

Fig. 4. Example images at each stage of processing. Figure shows the
quality of the initial HR estimate, the result of transform domain thresh-
olding and the estimated high pass details. Notice that the diagonal lines
become slightly sharper after adding the estimated details.
original images as LR inputs avoids downsampling artifacts
in inputs. However, for an objective evaluation, we require
a reference HR image. To this end, a 11-tap FIR anti-alias
filter, that is tested in the ITU-T/ISO-IEC evaluations of the
Scalable Video Coding [10], is used before decimation to
generate an LR image and the original image is used as the
reference HR image to measure the PSNR. The coeffici-
ents of the 11-tap filter for 2x downsampling are
½2; �2; �9;3;40;60;40;3; �9; �2;2�=128. In all the expe-
riments, this filter remains unknown to the proposed
interpolation system. Additionally, in Section 5.6, the
proposed system is kept fixed and the external down-
samplers are varied to record the performance variation.

There are many free parameters to be chosen in the
proposed method, such as the initial upsampling filter,
number of scales and directions in the transform, and
thresholds levels for hard thresholding in the transform
domain, etc. A joint optimization of all these internal
parameters involves a large search space. Hence, a simpler
approach is followed here, where we first select an initial
set of parameters and optimize some free parameters
keeping the others fixed, for 2x upsampling. The optimiza-
tion of free parameters is conducted using a training set
(16 images) and the final performance is evaluated on
a test set (200 images). The training and test sets are
disjoint. Throughout the optimization, the proposed
method with the chosen parameter set is compared to a
system with an 8-tap FIR filter without any iterative
refinement to record the average PSNR gain in the training
set. Although a 12-tap filter provides a higher PSNR, it is
not preferred as a reference, since some ringing artifacts
can be noticed in the 12-tap filter results.

5.1. Initial upsampler and downsampler for high frequency
extraction

In the first stage of the proposed framework, the input
LR image is upsampled using U . The rows of U are filled
with FIR filter coefficients so that the samples in the HR
grid corresponding to zero phase shift in the LR grid are
copied directly and the required fractional shifts are
produced using FIR filters. To this end, for 2x upsampling,
five different filters are considered which are given in
Table 1.

Next, a downsampler D is designed to enforce the
known data constraint. Ideally, a sinc filter for U and D
results in P ¼U � D being a projection operator [42].
However, it will be shown in Section 5.3 that FIR filter
approximations in U and D are sufficient for the purpose
of high frequency extraction in the current setup. To this
end, five different anti-alias filters are evaluated for 2x
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downsampling, given in Table 2. All the considered filters
are odd-length and symmetric, hence they do not induce
any phase shift.

5.2. Directional transform parameters

A compactly supported shearlet transform [39,29] is
chosen for the multi-resolution directional representation.
The initial configuration used for the shearlet transform
is:1 low pass component, 23 directional band pass com-
ponents and 23 directional high pass components. These
settings can be compactly represented in an array as
½0;3;3�, where the entries of the array are interpreted as
exponents of two. The number of entries in the array
denotes the number of scales used. For instance, ½0; a�
represents a configuration consisting of two scales: one
low pass component and 2a directional high pass compo-
nents. The configuration ½0; a; b� represents three scales:
one low pass component, 2a directional band pass com-
ponents, and 2b directional high pass components. The
computation of shearlet transform coefficients and the
reconstruction are carried out as multiplications in the
Fourier domain instead of convolutions in the spatial
domain to reduce the computational complexity. The
stages of sparsity enforcement and high frequency extrac-
tion are repeated 8 times. The threshold value for hard-
thresholding the shearlet coefficients is set to 100 and
decreased by a multiplicative factor of 0.6 in each iteration.
The proposed framework is also tested with the contourlet
transform. For a direct comparison of the contourlet and
shearlet dictionaries, the upsampling and downsampling
filters in the proposed framework are kept fixed and only
the dictionaries are switched. The threshold values for the
contourlet case are taken from [33].

5.3. Influence of initial interpolator and high frequency
extractor

The influence of U and D on the final HR result is
studied here. To this end, each interpolation filter from the
set {u2, u4, …, u12} is combined with a downsampling
filter from the set {d3, d9, …, d25} and 25 HR results are
produced for each LR input, i.e., the entire product space is
tested. Fig. 5 shows the test results for each tested
parameter combination, in the form of average PSNR
difference to the 8-tap FIR (u8) reference system. In the
y-axis, the 0 dB gain level represents a PSNR that is the
same as the reference system. It can be seen that the 3-tap
anti-alias filter d3 is not well suited for the system,
because it leaves too much aliasing. The remaining anti-
Table 2
Set of FIR filters considered for anti-aliasing in high frequency extraction.
Dots denote repetition of coefficients with mirror symmetry.

Symbol N-tap Anti-aliasing filter coefficients

d3 3 ½1;2;⋯�/4
d9 9 ½�1;0;9;16;⋯�/32
d13 13 ½1;0; �5;0;20;32;⋯�/64
d17 17 ½�1;0;4;0; �11;40;64;⋯�/64
d25 25 ½�1;0;4;0; �10;0;22;0; �48;0;161;256;⋯�=256
alias filters from the set perform relatively well. The best
PSNR performance is observed when the 13-tap anti-alias
filter is combined with a 12-tap interpolator, giving
0.75 dB gain over the reference 8-tap FIR interpolator.
However, PSNR improvements for interpolation filters
beyond 6-tap are rather small and the 12-tap interpolation
filter might introduce ringing artifacts in the initial
upsampled image. Therefore, the combination of the 6-
tap interpolation filter and the 13-tap downsampling filter
is chosen for further investigation.

5.4. Selection of the number of scales and directions in
transform

Next, the influence of the number of scales and direc-
tions for thresholding the estimated HR image in the
transform domain is studied. The tested configurations
are compactly represented in the same array format
described earlier. PSNR results using the proposed system
in the tested configurations are compared to the reference
8-tap FIR (u8) system and the observed average gains are
shown in Fig. 6. It can be seen that the configuration
½0;3;4�, i.e., one low pass, 8 directional band pass and 16
directional high pass components, provides the best per-
formance among the tested transforms (0.74 dB improve-
ment over reference).

In fact, for a 2x upsampling, we expect that only around
half the frequency components need refinement, for
which, using two scales should be sufficient. However, it
can be seen from Fig. 6 that the three scale configurations,
namely, ½0;2;n�; ½0;3;n�;…; ½0;6;n� perform better than the
two scale configuration ½0;n�. It suggests that an inter-
mediate scale provides a soft transition from low- to high-
frequency components for refinement. In other experi-
ments (not shown in figure), it is observed that using more
than three scales for 2x upsampling does not increase the
gain further.

5.5. Threshold selection for sparse approximation

The effect of thresholding in the shearlet domain on the
final interpolation quality is hard to express analytically. To
this end, two parameters for heuristic optimization are
identified: (a) threshold for the first iteration of refine-
ment, denoted as thr_max, and (b) a multiplicative decay
factor to decrease the threshold in each iteration.
The maximum number of iterations is set as 8 to
limit the overall computational complexity. For instance,
thr_max¼200 and decay¼0.7 generate the follow-
ing thresholds: f200;200� 0:7;200� 0:72;…;200� 0:77g.
The low pass components of the shearlet transform are not
thresholded and the same threshold value is used for the
remaining components, although a band wise optimiza-
tion of thresholds may further improve the performance.
PSNR results of the proposed method with chosen para-
meters are compared to the reference 8-tap FIR (u8)
system and the PSNR gain is computed. Average PSNR
gains on the training set are plotted in Fig. 7. It can be
observed that thr_max¼75, 100 and 125 perform well
with a decay factor of 0.5 or 0.6. The combination of
thr_max¼100 and decay¼0.6, which is the same as our
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initial setting,is selected for the final evaluation on the
test set.

5.6. Influence of external downsamplers to generate LR
images

With the system parameters fixed, the influence of the
external downsampling filter used to generate an LR input
from the HR original is studied in this experiment. To this
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Fig. 5. Influence of initial upsampler and downsampler for HF extraction.
Average PSNR difference (dB) between reference (8-tap FIR interpolator)
and test (proposed refinement approach with different combinations of
U and D) for a dataset of 16 training images. PSNR improvements for
initial interpolation filters beyond 6-tap are rather small.

2 3 4 5 6
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

n (number of directional high pass) −−>

dB
 g

ai
n 

−−
>

PSNR gain variation

[0, n]
[0, 2, n]
[0, 3, n]
[0, 4, n]
[0, 5, n]
[0, 6, n]

Fig. 6. Influence of the number of scales and directions. Each tested
configuration is represented in the array notation introduced. The
configuration [0, 3, 4], i.e., splitting the signal into one low pass, 23

directional band pass and 24 directional high pass components, is
observed to give the best results.
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Fig. 7. Threshold selection experiments. The threshold for the first
refinement iteration is denoted as thr_max and decreased exponentially
in each iteration by a decay factor (x-axis). The PSNR gain compared to an
8-tap FIR interpolator is recorded (y-axis). The system shows best gains
for thr_max between 75 and 125 with a decay factor around 0.5–0.6.
end, six different downsampling filters (approximately
halfband cut-off) are used and six LR images are generated
for each HR original. The test is conducted such that the
proposed method remains fixed and is unaware of the
actual external downsampler that has been used to gen-
erate the LR input. As a reference, the 8-tap FIR filter (u8) is
used to interpolate the same LR image and the resulting
PSNR is measured. Then, the PSNR difference to the
reference result is recorded. The average PSNR gain on
the training set is summarized in Table 3. It can be seen
from the result that the gains from the proposed technique
do not vary much when changing the downsampling
filters, as long as there is not much aliasing in the
generated LR images.

5.7. Final results on training and test set

The performance of the proposed method is compared
to various linear and non-linear methods. Among linear
methods: bicubic interpolation (u4), 8-tap filter (u8), 12-
tap filter (u12) and cubic spline interpolation are consid-
ered. The cubic spline approach is implemented as an IIR
prefilter to compute spline coefficients followed by a 4-tap
FIR filter for interpolation. Among the non-linear models, a
directional interpolation (NEDI [28]) technique is consid-
ered. The proposed framework is tested with contourlet
and shearlet transforms. The parameters for the contourlet
case are taken from [33].

The objective performance numbers of the overall sys-
tem with the selected parameter settings are summarized
in Table 4 for the training and test set. As can be seen, the
proposed approach consistently achieves a higher PSNR
compared to the other methods tested. On an average, a
PSNR improvement of 0.74 dB is achieved compared to the



Table 3
Influence of using different downsampling filters to generate LR images. For each HR image, six different LR images are generated using 2x downsampling
filters given in the first column. It can be seen that the proposed method achieves stable results and the external downsampling filter does not greatly
influence the gains.

External downsampler to produce LR input Proposed vs. 8-tap (db)

½�1;0;9;16;9;0; �1�=32 0.66
½�2;0;64;132;64;0; �2�=256 0.58
½1;0; �5;0;20;32;20;0; �5;0;1�=64 0.67
½1;0; �11;0;74;128;74;0; �11;0;1�=256 0.66
½�1;0;4;0; �17;0;78;128;78;0; �17;0;4;0; �1�=256 0.66
½1;0; �2;0;7;0; �21;0;79;128;79;0; �21;0;7;0; �2;0;1�=256 0.60

Table 4
PSNR results in dB for 2x interpolation comparing seven methods. Three linear approaches (bicubic, cubic spline, and 8-tap FIR) and two non-linear
approaches (Directional [28] and contourlet [17]) are compared to the proposed technique. The PSNR difference over 16 training and 200 test images are
summarized.

Image name Bicubic Directional Spline 8-tap 12-tap Contourlet Shearlet

bikes 26.68 26.20 27.02 27.23 27.32 27.63 28.38
building2 23.83 22.89 24.08 24.28 24.34 24.58 24.84
buildings 23.85 23.32 24.06 24.23 24.29 24.51 24.78
caps 35.60 35.38 35.78 36.06 36.13 36.33 37.03
coinsinfountain 30.56 29.60 30.44 31.08 31.16 31.62 32.08
flowersonih35 23.74 22.76 23.87 24.13 24.19 24.47 24.71
house 31.09 30.62 31.38 31.52 31.60 31.73 32.14
lighthouse2 29.19 28.55 29.44 29.55 29.61 29.78 30.07
monarch 31.87 31.04 32.37 32.59 32.71 33.03 33.85
ocean 32.17 31.70 32.23 32.47 32.52 32.62 32.93
paintedhouse 28.23 27.64 28.50 28.65 28.71 28.90 29.35
parrots 34.82 34.39 35.36 35.59 35.70 35.88 36.59
plane 31.47 30.32 31.59 31.86 31.92 32.30 32.78
rapids 29.42 28.73 29.67 29.91 29.98 30.18 30.66
sailing1 28.60 27.77 28.81 28.92 28.97 29.14 29.34
stream 24.73 24.03 24.93 25.08 25.14 25.29 25.50

Average (Train) 29.12 28.43 29.35 29.57 29.64 29.87 30.32
PSNR diff. (Train) �1.20 �1.88 �0.97 �0.74 �0.67 �0.44 –

PSNR diff. (Test) �1.09 �1.86 �0.81 �0.63 �0.56 �0.47 –
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8-tap filter for the considered training images. As a test set,
200 images from the Berkeley Segmentation Dataset [30]
are used. Average PSNR improvements are recorded in the
last row of Table 4. Compared to the 8-tap FIR filter, an
average gain of about 0.63 dB is observed. The maximum
gain and the minimum gain in the test set, compared to the
8-tap filter, are observed to be 3.13 dB and 0.14 dB, respec-
tively. The average gains observed on the test set are close
to the training set numbers.

5.8. Subjective evaluation

Fig. 8 shows two input LR images, (a) and (b), and
output HR images produced using directional, cubic spline
and the proposed interpolation technique. Directional
interpolation results, (c) and (f), have some jaggedness
for regions with strong edges and show some artifacts. The
cubic spline results, (d) and (g), do not have any strong
artifacts but show blurring of edges. HR images produced
using the proposed approach, (e) and (h), are sharper and
do not exhibit any noticeable artifacts. Fig. 9 shows two
more input LR images, (a) texture and (b) text areas, and
their corresponding output HR images. The texture in (e)
appears slightly sharper than other methods, and the text
in (h) seems to be sharper than the other results. It can
also be seen that, even for intricate textures, the proposed
method produces results without evident artifacts.

One of the main drawbacks of the proposed approach is
the high computational complexity. The complexity of the
proposed approach is much higher than that of typical FIR
interpolators, but of the same order of magnitude as other
non-linear methods such as the contourlet scheme [33]
and about 1.5� faster than the directional interpolation
approach of [28]. Some important parameters that can be
tuned for reducing the complexity are: the number of
iterations for sparse approximation, the number of scales,
and the number of orientations for the directional filtering.
The filtering operations and element-wise thresholding
involved in the proposed approach are amenable to
parallel implementation.

6. Summary and discussion

The problem of image interpolation is closely related to
image modeling, i.e., we “select” a particular HR image
that fits our model from a set of images that satisfy
the given LR data. Unlike many other forms of data, images
can show abrupt variations, e.g., across edges, which



Fig. 8. Example 4x interpolation results. Input patches of size 64�64 in (a) and (b) are upsampled to 256�256. In (c) the diagonal stripes show
jaggedness, in (d) the diagonal stripes are blurred, in (f) some artifacts can be noticed, in (g) the numbers and the rectangular frame below are blurry. The
results of the proposed approach, (e) and (h), appear slightly sharper without evident artifacts. (c, d) Directional [28]. (e, f) Cubic spline. (g, h) Proposed.
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introduces challenges in modeling. In this paper, a frame-
work for image interpolation that combines low frequen-
cies from a linear method and high frequencies from a
sparse approximation was presented. The key idea is to
keep the support of the FIR filter short to avoid ringing
artifacts in the initial upsampling and attack the problem
of blurriness of the resulting image using a high pass
estimate, through a sparse approximation in a multi-
resolution directional dictionary.

In this paper, we evaluated linear methods such as
bicubic, 6-tap, 8-tap, and 12-tap filters, as well as spline
based methods. In the non-linear category, a directional
interpolation method was evaluated, along with the pro-
posed method using contourlet and shearlet dictionaries.
All the tested approaches perform well for smooth image
regions, with the main differences being observed at edges
and in textured areas. The linear methods have only a
small number of free parameters and once a set of
parameters has been chosen, the performance variation
from image-to-image is relatively small. The non-linear
methods have a higher number of free parameters, hence a
more careful setting is required. Some quantitative meth-
ods were provided for parameter selection in the proposed
approach. With the final set of selected parameters, an



Fig. 9. More interpolation results for subjective evaluation. Results of 4x interpolation of LR inputs (a) texture and (b) text areas. (c, d) Directional [28]. (e, f)
Cubic spline. (g, h) Proposed.
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average PSNR gain of around 0.63 dB was observed com-
pared to a 8-tap filter over a test set of 200 images. The
maximum gain was around 3.13 dB, which is significant.
Additionally, many LR image regions with different char-
acteristics were interpolated and subjectively evaluated.
The proposed method showed improvements in subjective
quality compared to other approaches and no evident
artifacts were observed, even for complex regions.
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